Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
Bạn hack nick mình thu ib dưới vs nha giúp mk chuyện nàynn
A B H D C
Kẻ \(AH\perp BC(H\in BC)\)
Có HD và HC lần lượt là hình chiếu của AD,AC trên BC
Mà HD < HC
=> AD < AC \((\)quan hệ đường vuông góc và đường xiên\()\)
Do AB = AD \((gt)\)
=> AB < AC \((đpcm)\)
Chúc bạn học tốt :>

A B C H D \ /
Ta có HD < HC ( D nằm giữa H và C )
\(\Rightarrow\)AD < AC ( đường xiên và hình chiếu ) ( 1 )
Mà AD = AB ( gt ) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra AB , AC
Vậy AB < AC ( đpcm )

Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC

a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE và \(\widehat{ABD}=\widehat{AED}\)
Ta có: \(\widehat{ABD}+\widehat{DBF}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{DEC}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)
nên \(\widehat{DBF}=\widehat{DEC}\)
Ta có: AB+BF=AF
AE+EC=AC
mà AB=AE và AF=AC
nên BF=EC
Xét ΔDBF và ΔDEC có
DB=DE
\(\widehat{DBF}=\widehat{DEC}\)
BF=EC
Do đó: ΔDBF=ΔDEC
b: Ta có: AB+BF=AF
AE+EC=AC
mà AB=AE và AF=AC
nên BF=EC
c: Ta có: ΔDBF=ΔDEC
=>\(\widehat{BDF}=\widehat{EDC}\)
mà \(\widehat{EDC}+\widehat{EDB}=180^0\)
nên \(\widehat{BDF}+\widehat{EDB}=180^0\)
=>E,D,F thẳng hàng
d: ta có: ΔDBF=ΔDEC
=>DF=DC
=>D nằm trên đường trung trực của FC(1)
ta có: AF=AC
=>A nằm trên đường trung trực của CF(2)
Từ (1) và (2) suy ra AD là đường trung trực của CF
=>AD\(\perp\)CF

1. A B C D E
Chọn điểm D như hình vẽ. Gọi E là giao điểm của AB và DC.
Ta có: \(\widehat{ADE}\)là góc ngoài của tam giác ADC => \(\widehat{ADE}>\widehat{ACD}\)(1)
Tương tự \(\widehat{BDE}>\widehat{BCD}\)(2)
(1), (2) => \(\widehat{ADB}>\widehat{ACB}\)
Mà \(\widehat{ADB}=\widehat{ABD}\)
=> \(\widehat{ABC}>\widehat{ABD}=\widehat{ADB}>\widehat{ACB}\)
=> AC>AB
A B C H
Xét tam giác ABC vuông tại A
Theo BĐT tam giác: \(AB< AC+BC\)
Và tam giác AHC vuông tại H có: \(AC< AH+CH\) (1)
\(\Rightarrow AB+AC< \left(AH+BC\right)+\left(AC+CH\right)\)
Hay \(AB+AC< \left(AH+CH+BH\right)+\left(AC+CH\right)\)
Hay \(AB+AC< AH+2CH+BH+AC\)
Bớt AC ở cả hai vế: \(AB< AH+2CH+BH\) (2)
Từ (1) và (2) suy ra \(AB+AC< 2AH+2CH+BH+CH\)
Hay \(AB+AC< 2AH+2CH+BC\)
Tới đây bí rồi.

A B C D E F H
a)Xét tam giác ABD và tam giác AED có:
AB=AE(gt)
góc BAD=góc EAD(do AD là tia phân giác của góc BAC)
AD là cạnh chung
Do đó: tam giác BAD= tam giác EAD(c.g.c)
=> BD=DE( 2 cạnh T.Ư)
Xét tam giác FAD và tam giác CAD có:
FA=CA(gt)
góc BAD=góc EAD(do AD là tia phân giác của góc BAC)
AD là cạnh chung
Do đó tam giác FAD= tam giác CAD(c.g.c)
=> FD=CD( 2 cạnh T.Ư)
Xét tam giác BDF và tam giác EDC có:
BD=DE(CMT)
góc BDF=góc EDC( vì đối đỉnh)
FD=CD( 2 cạnh T.Ư)
Do đó tam giác BDF= tam giác EDC(c.g.c)
Gửi trước câu a