Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C H 6 8
a, Xét tam giác HBA và tam giác ABC ta có :
^AHB = ^BAC = 900
^B _ chung
Vậy tam giác HBA ~ tam giác ABC ( g.g )
b, Xét tam giác ABC vuông tại A, AH là đường cao
Áp dụng định lí Pytago cho tam giác ABC :
\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm
Vì tam giác HBA ~ tam giác ABC ( cma )
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)( tỉ số đồng dạng )
\(\Rightarrow\frac{AH}{8}=\frac{6}{10}\Rightarrow AH=\frac{48}{10}=\frac{24}{5}\)cm

K D H A B C
a) Xét tam giác ADC và tam giác BKC có:
\(\hept{\begin{cases}\widehat{C}\text{ chung}\\\widehat{BKC}=\widehat{ADC}\left(=90^{\text{o}}\right)\end{cases}}\Rightarrow\Delta ADC\approx\Delta BKC\)(g-g)
b) Xét tam giác BDM và tam giác BDH có :
\(\hept{\begin{cases}BD\text{ chung}\\\widehat{BDM}=\widehat{BDH}\left(=90^{\text{o}}\right)\\MD=DH\end{cases}}\Rightarrow\Delta BDM=\Delta BDH\left(c.g.c\right)\)
=> \(\widehat{BMD}=\widehat{BHD}\left(\text{góc tương ứng}\right)\)
=> \(\Delta MBH\text{ cân tại B}\)
c) Xét tam giác AHK và tam giác BMD có :
\(\hept{\begin{cases}\widehat{BMD}=\widehat{AHK}\left(=\widehat{BHD}\right)\\\widehat{BDM}=\widehat{HKA}\left(=90^{\text{o}}\right)\end{cases}\Rightarrow\Delta AKH\approx\Delta BMD\left(g-g\right)}\)
=> \(\Rightarrow\widehat{DBM}=\widehat{KAH}\text{ hay }\widehat{CBM}=\widehat{CAM}\)

b,
Theo định lý Py-ta-go ta có:
+)
Trong Tam giác ABC vuông tại B
Ta có:
AB^2+BC^2=AC^2
=> AC^2=100
=> AC = 10
a,
Xét tam giác BAC và QEC có:
Góc ABC= Góc CQE
Góc C chung
Góc CQE= Góc CAB ( Vì Góc A + Góc B + Góc C = Góc CQE + Góc C + Góc QEC )
=> BAC đồng dạng với QEC
(đpcm)
a: Xét ΔKBC vuông tại K và ΔCBA vuông tại C có
\(\widehat{KBC}\) chung
Do đó: ΔKBC~ΔCBA
b:
Ta có: \(\widehat{EMC}=\widehat{BMK}\)(hai góc đối đỉnh)
\(\widehat{BMK}+\widehat{KBM}=90^0\)(ΔBKM vuông tại K)
Do đó: \(\widehat{EMC}+\widehat{KBM}=90^0\)
Ta có: \(\widehat{MEC}+\widehat{EBC}=90^0\)(ΔBCE vuông tại C)
\(\widehat{EMC}+\widehat{KBM}=90^0\)
mà \(\widehat{EBC}=\widehat{KBM}\)
nên \(\widehat{EMC}=\widehat{MEC}\)
=>ΔEMC cân tại C