K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

a) AC = ? 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta có:

AC2 = AB2 + BC2

        = 52 + 122 = 25 + 144 = 169 

⇒ AC = 13 (cm)

b) ΔEAD cân

Xét hai tam giác vuông ABE và DBE có:

AB = BD (gt)

BE là cạnh chung

Do đó: ΔABE = ΔDBE (hai cạnh góc vuông)

⇒ EA = ED (hai cạnh tương ứng)

⇒ ΔEAD cân tại E.

c) K là trung điểm của DC.

Ta có: BE = 4, BC = 12 

⇒ BE = 1/3 BC 

Hay E là trọng tâm của ΔACD.

⇒ AE là đường trung tuyến ứng với cạnh DC

⇒ K là trung điểm của DC.

d) AD < 4EK 

Ta có: EA > AB, ED > BD

Mà AD = AB + BD,     AE = ED (câu b)

⇒ 2AE > AD 

Và EK = 1/2EA , nhân 2 vế cho 4. Ta được: 4EK = 2EA 

Vì 2AE > AD (cmt), 4EK = 2EA ⇒ 4EK > AD (đpcm)

26 tháng 4 2019

B A D C E

26 tháng 2 2020

A B C E D F

D)VÌ\(\Delta ADF=\Delta EDC\left(cmt\right)\)

\(\Rightarrow\widehat{ADF}=\widehat{EDC}\)(HAI GÓC TƯƠNG ỨNG)

TA CÓ \(\widehat{ADE}+\widehat{EDC}=180^o\left(KB\right)\)

THAY  \(\widehat{ADE}+\widehat{ADF}=180^o\)

       \(\widehat{FDE}=180^o\)

=> BA ĐIỂM F ,D,E THẲNG HÀNG

26 tháng 2 2020

a) XÉT \(\Delta ABC\)VUÔNG TẠI A

\(BC^2=AB^2+AC^2\left(\text{Đ}/LPY-TA-GO\right)\)

THAY\(BC^2=3^2+4^2\)

\(BC^2=9+16\)

\(BC^2=25\)

\(\Rightarrow BC=\sqrt{25}=5\left(cm\right)\)

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

a: XétΔABC có \(AC^2=BA^2+BC^2\)

nên ΔBAC vuông tại B

b: Xét ΔEAD có

EB là đường cao

EB là đường trung tuyến

Do đó: ΔEAD cân tại E

c: Xét ΔCDA có 

CB là đường cao

CE=2/3CB

Do đó: E là trọng tâm của ΔCDA

=>AE là đường trung tuyến ứng với cạnh CD

mà K là trung điểm của CD

nên A,E,K thẳng hàng

22 tháng 6 2019

a ) Áp dụng định lí Py-ta-go vào tam giác vuông ABC có :
\(AB^2+BC^2=AC^2\)

\(5^2+12^2=AC^2\)

            \(169=AC^2\)

\(\Rightarrow AC=\sqrt{169}=13\left(cm\right)\)

Vậy AC = 13 cm

b ) Ta có : \(\widehat{EBA}+\widehat{EBD}=180^o\)

                 \(90^o+\widehat{EBD}=180^o\)

\(\Rightarrow\widehat{EBD}=180^o-90^o=90^o\)

Xét \(\Delta EBA\) và \(\Delta EBD\) có :

BA = BD ( gt )

\(\widehat{EBA}=\widehat{EBD}\left(=90^o\right)\)

BE là cạnh chung 

nên \(\Delta EBA=\Delta EBD\left(c.g.c\right)\)

=> EA = ED ( hai cạnh tương ứng )

=> \(\Delta EAD\) cân tại E

A) Áp dụng định lý Py-ta-go ta có :

AC^2 = AB ^2+ BC^2

=>√AC = 25+144

=> AC = 13

b)Xét tam giác AEB và Tam giác DEB cùng vuông tại B ta có :

AB = BD

BE chung

=> tam giác AEB = tam giác DEB(2 cạch góc vuông)

=> AE = ED (2 cạnh tương ứng)

=> Tam giác AED cân tại E