Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sai đề rồi bạn ơi, 2 đường thẳng song song thì làm sao mà cắt nhau được.
Cho tam giác ABC vuông tại A, đường cao AH, biết BH=a; CH=b. Chứng minh:\(\sqrt{ab}< \frac{a+b}{2}\)

Cho tam giác ABC vuông tại A, đường cao AH, biết BH=a; CH=b. Chứng minh:\(\sqrt{ab}< \frac{a+b}{2}\)


Để giải bài toán này, ta sẽ thực hiện theo từng phần như sau:
a. Tính AH
Trong tam giác vuông ABC, ta có:
- BH = 4 cm
- CH = 9 cm Áp dụng định lý Pytago-rơ: \(A B^{2} = B H^{2} + C H^{2}\) \(A B^{2} = 4^{2} + 9^{2} = 16 + 81 = 97\) \(A B = \sqrt{97} \approx 9.85 \&\text{nbsp};\text{cm}\) Vì tam giác ABC vuông tại A, nên AH là đường cao của tam giác. Áp dụng định lý Pytago-rơ: \(A H^{2} + H B^{2} = A B^{2}\) \(A H^{2} + 4^{2} = 97\) \(A H^{2} = 97 - 16 = 81\) \(A H = \sqrt{81} = 9 \&\text{nbsp};\text{cm}\)
b. Chứng minh tam giác ADE đồng dạng với tam giác ACB
Để chứng minh hai tam giác đồng dạng, ta cần chứng minh có ít nhất hai cặp cạnh tỷ lệ với nhau.
Xét tam giác ADE và tam giác ACB:
- Tam giác ADE và tam giác ACB đều là tam giác vuông.
- Góc A chung cho cả hai tam giác.
- Tỷ lệ AE/AC = AD/AB (vì AH là đường cao). Vậy hai tam giác ADE và ACB đồng dạng.
c. Kẻ đường thẳng vuông góc với DE tại E, cắt HC tại M. Tính sin DME
Theo định lý Pytago-rơ, ta có:
\(D M^{2} + M E^{2} = D E^{2}\)
Vì DE vuông góc với EM, nên:
\(s i n D M E = \frac{D M}{D E}\)

ta có sina = AH/AC, cosa= CH/AH ,góc AMH =2a, cos2a =HM/AM =HM /a ,sin2a =AH/AM=AH/a.
=>2sina.cosa =2 . AH/AC.CH/AC= 2AH.CH/AC2 =2AH.CH/BC.CH=2AH/2a=AH/a =sin2a
(:p)

Ta thấy:
\(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow a^2+2ab+b^2\ge2ab+2ab\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)
\(\Rightarrow\sqrt{\frac{\left(a+b\right)^2}{4}}\ge\sqrt{ab}\)
\(\Rightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
hay \(\sqrt{ab}\ge\frac{a+b}{2}\)

a) Theo hệ thức lượng trong tg vuông ta có:
AB2 =BH.BC
Và AC2= CH.BC
=>AB2/AC2=BH.BC/CH.BC=BH/CH
Vậy ...
b) mik ko bt E và F là j nên ko làm đc nha
Áp dụng HTL: \(AB^2=BH.BC;AC^2=CH.BC\)
\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{CH}\)