K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
![](https://rs.olm.vn/images/avt/0.png?1311)
1 tháng 3 2019
\(B=\frac{1}{4}\left(a^2b^2\right)2ab\) tại a = 1, b = |2|
\(B=\frac{1}{4}\left(1^2.2^2\right)2.1.2\)
\(B=\frac{1}{4}.4.2.1.2\)
\(B=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
H
15 tháng 2 2018
a, Ta có góc BAC=BAH ( vì cùng phụ với góc ABH )
b, => Cần chứng minh \(AB^2-BH^2=AC^2-CH^2\) (1)
Theo định lý Py-ta-go :
Trong tam giác vuông AHB có : \(AB^2-BH^2=AH^2\)
Trong tam giác vuông AHC có : \(AC^2-HC^2=AH^2\)
=> VT= VP => (1) đúng đpcm
mình thấy đề hơi thiếu dữ kiện thì phải
A B C H 1 2
a) Ta có : \(\widehat{BAC}=\widehat{A_1}+\widehat{A_2}=90^o\) (1)
Do tam giác AHC vuông ở H \(\Rightarrow\widehat{C}+\widehat{A_2}=90^o\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{A_1}=\widehat{C}\)
b) Áp dụng định lý Pytago trong tam giác ta có :
\(AB^2=AH^2+BH^2\)
\(AC^2=AH^2+HC^2\)
Lại có : \(BH^2+AH^2+CH^2=CH^2+BH^2+AH^2\)
\(\Leftrightarrow AB^2+CH^2=AC^2+BH^2\) ( đpcm )