Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân gi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2023

a) xét ΔABD và ΔEBD có:   

  BA = BE (GT)   

 ∠ABD=∠EBD( BD là tia phân giác ∠ABE)

  BD chung⇒ΔABD=ΔEBD(ch-cgv)

⇒AD=ED (2 cạnh tương ứng)

b)Vì ΔABD=ΔEBD(CMT)

⇒∠BAD=∠BED(2 góc tương ứng)

Mà ∠BAD= 90 độ

⇒∠BED = 90 độ

7 tháng 7 2017

Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

a) \(\Delta ABD=\Delta EBD\left(c.g.c\right)\Rightarrow DA=DE\)

b) Vì \(\Delta ABD=\Delta EBD\) nên \(\widehat{A}=\widehat{BED}\). Do \(\widehat{A}=90^0\) nên \(\widehat{BED}=90^0\)

27 tháng 11 2016

B C D A E F

a) Xét ΔADB và ΔEDB có:

BA = BE ( giả thiết )

Góc ABD = EBD ( BD là tia phân giác của góc ABE )

BD cạnh chung.

=> ΔADB = ΔEDB ( c.g.c )

=> DA = DE ( 2 cạnh tương ứng )

b) Vì ΔADB = ΔEDB nên góc DAB = DEB = 90 độ ( 2 góc tương ứng).

27 tháng 11 2016

Mk vẽ hình ko đc đẹp cho lắm, thông cảm nha!

12 tháng 12 2020
Xét `\delta ABD` và `\delta EBD` có: `AB = BE` (gt) `\hat{ABD} = \hat{EBD}` (`AD` là phân giác `\hat{B}`) `BD` chung `-> \delta ABD = \delta EBD` (c.g.c) `-> DA = DE` (2 cạnh tương ứng) b) Do \delta ABD = \delta EBD` `=> \hat{BED} = \hat{A} = 90^o` (2 góc tương ứng)

Bài tập Tất cả

10 tháng 7 2015

a)Xét tam giác ABD và tam giác EBD, có : 

AB=EB ( gt)

góc B1= góc B2(BD là p/giác góc ABE)                }=>tam giác ABD = tam giác EBD

BD chung 

=> AD=DE (2 cạnh tg ứng)

b) Vì tam giác ABD = tam giác EBD (c/m a)

=> góc BAD=góc BED

Mà góc BAD=90 độ

=>góc BED=90 độ

Vây góc BED=90 độ

10 tháng 7 2015

A B C E D

a) Xét tam giác ABD và EBD có: AB = BE ; góc ABD = EBD; BD chung

=> tam giác ABD = EBD (c - g - c)

=> AD = DE và BAD = BED = 90o

28 tháng 3 2020

Giải:
a) Xét ΔABD và ΔEBD có :

AB=BE(gt)

B1ˆ=B2ˆ(=12Bˆ)

BD: cạnh chung

⇒ΔABD=ΔEBD(c−g−c)

⇒DA=DE ( cạnh tương ứng )

Vậy DA=DE

b) Vì ΔABD=ΔEBD

⇒ góc A= góc BED

Mà  góc A=900⇒ góc BED=900

Vậy góc BED =900

c) VÌ ΔABD=ΔEBD ( cmt)

=> góc ABD = góc EBD( 2 góc tương ứng)

Xét \(\Delta ABIv\text{à}\Delta EBI\)có:

  AB = EB

góc ABD = góc EBD

BI cạnh chung 

=>\(\Delta ABI=\text{ }\Delta EBI\)

=> góc AIB = góc EIB và IA = IE          (1)

Mà góc AIB + góc EIB =180 0

=> \(\hept{\begin{cases}g\text{ócAIB=90^0}\\g\text{óc EIB=90^0}\end{cases}}\)(2)

Từ (1),(2) => BI là đường trung trực của AE

Mà I \(\in\)BD

=> BD là đường trung trực của AE

Vậy BD là đường trung trực của AE