Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Góc β: Góc giữa B', C, A Góc β: Góc giữa B', C, A Góc γ: Góc giữa B'', C, B' Góc γ: Góc giữa B'', C, B' Góc δ: Góc giữa B, C, E Góc δ: Góc giữa B, C, E Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, C] Đoạn thẳng l: Đoạn thẳng [C, D] Đoạn thẳng m: Đoạn thẳng [E, C] Đoạn thẳng p: Đoạn thẳng [D, H] Đoạn thẳng r: Đoạn thẳng [E, K] B = (-0.89, 7.08) B = (-0.89, 7.08) B = (-0.89, 7.08) A = (-0.9, 2.2) A = (-0.9, 2.2) A = (-0.9, 2.2) Điểm C: Điểm trên g Điểm C: Điểm trên g Điểm C: Điểm trên g Điểm E: Giao điểm của k, f Điểm E: Giao điểm của k, f Điểm E: Giao điểm của k, f Điểm D: Giao điểm của j, f Điểm D: Giao điểm của j, f Điểm D: Giao điểm của j, f Điểm H: Giao điểm của n, m Điểm H: Giao điểm của n, m Điểm H: Giao điểm của n, m Điểm K: Giao điểm của q, i Điểm K: Giao điểm của q, i Điểm K: Giao điểm của q, i
Kẻ \(DH⊥EC\left(H\in EC\right)\)
Khi đó do \(\widehat{ACD}=\widehat{HCD}\left(gt\right)\Rightarrow\Delta ACD=\Delta HCD\) (Cạnh huyền góc nhọn)
Vậy nên AD = HD (Hai cạnh tương ứng)
Lại thấy HD là đường vuông góc, DE lại là đường xiên nên DH < DE hay AD < DE.
Tương tự, kẻ \(EK⊥BC\left(K\in BC\right)\)
Ta cũng chứng minh được DE = EK < EB.
Vậy thì AD < DE < EB (đpcm).

câu a là c/m 2 tam giác bằng nhau nhé: tg AED và tg ACD từ đó suy là các ggo1c và cạnh tương ứng bằng nhau nha!
câu b là: vì tg AEC là tg cân( AE=EC) , ad là tia phân giác mà I thuộc Ad nên Ai cũng là tia phân giác góc EAC suy ra AI là đường trung trực suy ra I là trung điểm Ec và Ai vuông góc EC

ABCDEN
\(a.\)
Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(AD=AB\) \(\left(gt\right)\)
\(\widehat{DAE}=\widehat{BAC}\left(=90^0\right)\)
\(AE=AC\) \(\left(gt\right)\)
Do đó : \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)
\(\Rightarrow DE=BC\) ( hai cạnh tương ứng )
\(b.\)
Ta có :
\(\widehat{ADE}=\widehat{CDN}\) ( hai góc đối đỉnh )
\(\widehat{C}=\widehat{E}\) ( vì \(\Delta ADE=\Delta ABC\) )
\(\Rightarrow\widehat{N}=\widehat{A}\left(90^0\right)\)
Hay \(DE\perp BC\)
Vậy \(DE\perp BC\)

mấy bạn phải giải cho mình trước để mình xem đúng hay ko thì mình mới tick được chứ mình ko thể tick đúng lung tung được