K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên

29 tháng 8
a: Sửa đề: Chứng minh \(\hat{ABC}=\hat{DFC}\)
Ta có: \(\hat{ABC}+\hat{ACB}=90^0\) (ΔABC vuông tại A)
\(\hat{DFC}+\hat{C}=90^0\) (ΔFDC vuông tại D)
Do đó: \(\hat{ABC}=\hat{DFC}\)
b:
AD là phân giác của góc BAC
=>\(\hat{BAD}=\hat{CAD}=\frac12\cdot\hat{BAC}=\frac{90^0}{2}=45^0\)
Xét tứ giác AFDB có \(\hat{FAB}+\hat{FDB}=90^0+90^0=180^0\)
nên AFDB là tứ giác nội tiếp
=>\(\hat{DFB}=\hat{DAB}\)
=>\(\hat{DFB}=45^0\)
Xét ΔDFB vuông tại D có \(\hat{DFB}=45^0\)
nên ΔDBF vuông cân tại D
=>DB=DF
c: Xết ΔAED và ΔAFD có
AE=AF
\(\hat{EAD}=\hat{FAD}\)
AD chung
Do đó: ΔAED=ΔAFD
=>DE=DF
mà DB=DF
nên DB=DE