Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn kham khảo link này nhé.
Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath
đề bài bn cho sai đấy nhé,chỗ "gọi E là giao điểm của ME và AB" ấy, ở đó đáng lẽ pk là F là giao điểm đúng ko? mk đã sửa lại rồi đấy.
a) ta có tam giác ABM=tam giác EBM(CH-GN)
=> AB=EB
gọi H là giao điểm của AE và MB
xét tam giác HBA và tam giác HBE có:
HB cạnh chung
\(\widehat{HBA}\)=\(\widehat{HBE}\)(gt)
AB=EB(cmt)
=> tam giác HBA=tam giác HBE(c.g.c)
=> HA=HE => H là trung điểm của AE(1)
\(\widehat{AHB}\)=\(\widehat{EHB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AHB}\)=\(\widehat{EHB}\)=90 độ
=> BH\(\perp\)AE(1)
từ (1) và (2) suy ra BM là trung trực của AE
b) xet 2 tam giác vuông AMF và EMC có:
AM=ME(vì t.giác ABM=t.giác EBM)
\(\widehat{AMF}\)=\(\widehat{EMC}\)(vì đối đỉnh)
=> tam giác AMF=tam giác EMC(cạnh góc vuông-góc nhọn kề)
=> MC=MF(2 cạnh tương ứng)
A B C M E F H
![](https://rs.olm.vn/images/avt/0.png?1311)
a) tam giác ABM và tam giác HBM có:
<ABM = <HBM (p/g)
BM chung
<A = <H
=>tam giác ABM = tam giác AHM (ch-gn)
b) theo câu a => AM = HM =>BM là trung trực của AH
c) tam giác AKM và tam giác HMC có:
<AMK = <HMC ( đối đỉnh)
AM = HM ( theo câu b)
<MAK = <MHC (=90 độ)
=> tam giác AKM = tam giác HMC (cgv-gn)
=>MK = MC ( hai cạnh tương ứng)
d)...
Làm
a) Xét hai tam giác vuông ABM và tam giác vuông KBM có :
BM là cạnh chung
góc ABM = góc KBM ( gt )
Do đó : Tam giác ABM = tam giác KBM ( cạnh huyền - góc nhọn )
=> BA = BK nên B thuộc đường trung trực của AK
MA = MK nên K thuộc đường trung trực của AK
Vậy BM là đường trung trực của AK
b) Xét hai tam giác vuông AMN và tam giác KMC có :
góc AMN = góc KMC ( đối đỉnh )
MA = MK ( theo câu a )
Do đó : tam giác AMN = KMC ( cạnh góc vuông - góc nhọn )
Vậy MC = MN
c) Phần c không dõ đề bài nên mk k giải đc câu c nếu muốn giải câu c thì cậu gửi đề bài cho mk mk giải cho
d) Ta có : AB + AN = BN
BK + KC = BC
Mà BA = BK ( theo câu a )
AN = KC ( Theo câu b )
=> BN = BC ( *)
Xét tam giác NBM và tam giác CBM có :
BM là cạnh chung
BN = BC ( theo *)
góc NBM = góc CBM ( gt )
Do đó : tam giác NBM = tam giác CBM ( c.g.c )
=> góc BMN = góc BMC
mà góc BMN + góc BMC = 180°
=> góc BMN = góc BMC = 180° : 2
=> góc BMN = góc BMC = 90°
Vậy BM vuông hóc với NC
HỌC TỐT
Hình bn tự vẽ nhé
a. Xét hai tam giác vuông ABM và tam giác vuông KBM có;
góc BAM = góc BKM = 90độ
cạnh BM chung
góc ABM = góc KBM [ vì BM là tia pg góc B ]
Do đó ; tam giác ABM = tam giác KBM [ cạnh huyền - góc nhọn ]
\(\Rightarrow\)AB = KB nên B \(\in\)đường trung trực của AK
và MA = MK nên M \(\in\)đường trung trực của AK
\(\Rightarrow\)BM là đường trung trực của AK
b.Xét hai tam giác vuông AMN và tam giác vuông KMC có ;
góc MAN = góc MKC = 90độ
AM = KM [ theo câu a ]
góc AMN = góc KMC [ đối đinh ]
Do đó ; tam giác AMN = tam giác KMC [ cạnh góc vuông - góc nhọn ]
\(\Rightarrow\)MN = MC [ cạnh tương ứng ]
c.Theo câu a ; tam giác ABM = tam giác KBM
\(\Rightarrow\)AM = KM [ cạnh tương ứng ] [ 1 ]
Xét tam giác KMC vuông tại K nên ;
MK bé hơn MC [ 2 ]
Từ [ 1 ] và [ 2 ] suy ra ;
AM bé hơn MC
d. Theo câu b ; tam giác AMN = tam giác KMC
\(\Rightarrow\)AN = KC [ cạnh tương ứng ]
mà BA = BK [ vì tam giác ABM = tam giác KBM theo câu a ]
\(\Leftrightarrow\)AN + BA = KC + BK
\(\Rightarrow\) BN = BC nên B thuộc đường trung trực của CN
mà MN = MC nên M thuộc đường trung trực của CN
Vậy BM thuộc đường trung trực của CN
\(\Rightarrow\)BM vuông góc với CN
Theo mk nghĩ thì câu c . So sánh AM với MC
d. BM vuông góc với CN
HỌC TỐT
Nhớ kb với mk nha