Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{B}=\widehat{BAD}=\widehat{CAD}\)
c: \(\widehat{ABD}=\widehat{EDF}\)
\(\widehat{BAD}=\widehat{EDA}\)
mà \(\widehat{ABD}=\widehat{BAD}\)
nên \(\widehat{EDF}=\widehat{EDA}\)
hay DE là tia phân giác của góc ADC
\(\widehat{DEF}=\widehat{ADE}\)
\(\widehat{CEF}=\widehat{CAD}\)
mà \(\widehat{ADE}=\widehat{CAD}\)
nên \(\widehat{DEF}=\widehat{CEF}\)
hay EF là tia phân giác của góc EDC

Ta có CE vuông góc AB (GT)
suy ra CE là đường cao (1)
Ta có BD vuông góc AC(GT)
suy ra BD là đường cao (2)
Mà BD giao CE tại H
Từ (1) và (2) suy ra H là trực tâm (định nghĩa )
suy ra AM vuông góc BC (1)
Ta có tam giác ABC cân tại A (GT)
suy ra AB=AC (định nghĩa )
Ta có AM vuông góc BC (CMT)
suy ra góc AMB = góc AMC = 90
Xét tam giác AMB và tam giác AMC có
AM chung
góc AMB = góc AMC =90
AB= AC(CMT)
suy ra tam giác AMB = tam giác AMC (ch-cgv)
suy ra M là trung điểm BC (2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
OK rồi đó

A B C M N I H
có góc MAB = góc NAC = 90
góc MAB + gpcs BAC = góc MAC
góc NAC + góc BAC = góc BAN
=> góc MAC = góc BAN
xét tam giác MAC và tam giác BAN có :
MA = MB do tam giác MAB cân tại A (gt)
AN = AC do tam giác ANC cân tại A (gt)
=> tam giác MAC = tam giác BAN (c-g-c)
b, gọi MC cắt BA tại I và MC cắt BN tại E
xét tam giác MIA vuông tại A => góc AMI + góc MIA = 90
có góc AMI = góc IBE do tam giác MAC = tam giác BAN (Câu a)
góc MIA = góc BIE (đối đỉnh)
=> góc BIE + góc IBE = 90
=> tam giác BIE vuông tại E
=> MC _|_ BN
c,

Ta có hình vẽ:
A B C x y H
a) Xét Δ ABC có: BAC + ACB + ABC = 180o (tổng 3 góc của Δ)
=> BAC + 45o + 45o = 180o
=> BAC + 90o = 180o
=> BAC = 180o - 90o = 90o
b) Ta có: BAC + BAx = 180o (kề bù)
=> 90o + BAx = 180o
=> BAx = 180o - 90o = 90o
Vì Ay là phân giác của BAx nên \(xAy=yAB=\frac{BAx}{2}=\frac{90^o}{2}=45^o\)
Có: yAB = ABC = 45o
Mà yAB và ABC là 2 góc ở vị trí so le trong nên Ay // BC (đpcm)
c) Vì Ay // BC; \(AH\perp Ay\) => \(BC\perp Ay\)
=> AHC = 90o
=> HAC + ACH = 90o
=> HAC + 45o = 90o
=> HAC = 90o - 45o
=> HAC = 45o = ABC (đpcm)