Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\hat{BAE}+\hat{CAE}=\hat{BAC}=90^0\)
\(\hat{BEA}+\hat{HAE}=90^0\) (ΔEHA vuông tại H)
mà \(\hat{CAE}=\hat{HAE}\) (AE là phân giác của góc HAC)
nên \(\hat{BAE}=\hat{BEA}\)
=>ΔBAE cân tại B
Ta có: \(\hat{CAD}+\hat{BAD}=\hat{BAC}=90^0\)
\(\hat{CDA}+\hat{HAD}=90^0\) (ΔHAD vuông tại H)
mà \(\hat{BAD}=\hat{HAD}\) (AD là phân giác của góc BAH)
nên \(\hat{CAD}=\hat{CDA}\)
=>ΔCAD cân tại C
O là giao điểm của các đường phân giác trong ΔABC
=>BO là phân giác của góc ABE, CO là phân giác của góc ACD
Xét ΔBAE cân tại B có BO là đường phân giác
nên BO là đường trung trực của AE
=>OA=OE
Xét ΔCAD cân tại C có CO là đường phân giác
nên CO là đường trung trực của AD
=>OA=OD
=>OA=OE=OD
=>(O;OA) đi qua ba điểm A,D,E
b: Ta có: AD là phân giác của góc HAB
=>\(\hat{HAD}=\frac12\cdot\hat{HAB}\)
Ta có: AE là phân giác của góc HAC
=>\(\hat{HAE}=\frac12\cdot\hat{HAC}\)
Ta có: tia AH nằm giữa hai tia AE và AD
=>\(\hat{EAD}=\hat{EAH}+\hat{DAH}=\frac12\cdot\left(\hat{BAH}+\hat{CAH}\right)=\frac12\cdot\hat{BAC}=45^0\)
Xét (O;OE) có
\(\hat{EAD}\) là góc nội tiếp chắn cung ED
=>\(\hat{EOD}=2\cdot\hat{EAD}=2\cdot45^0=90^0\)
Câu a. Chứng minh A, D, E cùng thuộc (O; OA)
Ta phân tích:
- O là tâm nội tiếp △ABC. Vậy OA, OB, OC là phân giác các góc A, B, C.
- Đường tròn (O; OA) chính là đường tròn bàng tiếp trong góc vuông tại A, hay ta hay gọi là "đường tròn mixtilinear" trong tam giác vuông.
👉 Điều cần chứng minh: D, E cũng nằm trên đường tròn này.
- Xét tam giác vuông AHB: Tia phân giác của ∠BAH đi qua D.
- Tia phân giác của ∠BAH chia ∠BAH thành 2 góc bằng nhau. Nhưng ta lại biết OA cũng là phân giác ∠BAC.
=> D nằm trên đường tròn (O; OA).
- Lập luận tương tự cho E từ tam giác vuông AHC.
Kết luận: Đường tròn (O; OA) đi qua A, D, E. ✅
Câu b. Tính số đo ∠DOE
Ta biết:
- D, E cùng nằm trên (O; OA).
- Đường tròn này đối xứng qua phân giác ∠A.
👉 Suy nghĩ: ∠DOE sẽ liên quan đến ∠BAC.
- Vì A là đỉnh góc vuông (∠A = 90°).
- D và E là ảnh của nhau qua phân giác ∠BAC (tức qua OA).
- Vậy ∠DOE = 2 × ∠BAC = 2 × 90° = 180°/2 ??? → Chờ kiểm tra kỹ.
Cách khác:
Trong đường tròn (O; OA):
- Cung DE đối diện với A có số đo bằng 2∠BAH = 2∠CAH = 90°.
- Nên ∠DOE = 90°.
✅ Kết quả:
a) (O; OA) đi qua A, D, E.
b) ∠DOE = 90°.
tham khảo

a: Xét tứ giác BFED có
ED//BF
FE//BD
Do đó: BFED là hình bình hành
Xét ΔABC có
D là trung điểm của BC
DE//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
E là trung điểm của AC
EF//CB
Do đó: F là trung điểm của AB
Xét ΔCDE và ΔEFA có
CD=EF
DE=FA
CE=EA
Do đó: ΔCDE=ΔEFA
b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC
Trên tia FE lấy điểm E sao cho E là trung điểm của FK
Xét tứ giác AFCK có
E là trung điểm của AC
E là trung điểm của FK
Do đó: AFCK là hình bình hành
Suy ra: AF//KC và KC=AF
hay KC//FB và KC=FB
Xét tứ giác BFKC có
KC//FB
KC=FB
Do đó: BFKC là hình bình hành
Suy ra: FE//BC(ĐPCM)

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.

Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau

a) Xét tứ giác AIHK có \(\widehat{AIH}+\widehat{IAK}+\widehat{AKH}=270^o\Rightarrow\widehat{IHK}=90^o\)
Vậy nên \(HI\perp HK\)
b) Do IA và HK cùng vuông góc với AC nên IA // HK
Vậy thì \(\widehat{IAH}=\widehat{KHA}\) (So le trong)
Xét tam giác IAH và tam giác KHA có:
\(\widehat{AIH}=\widehat{HKA}=90^o\)
Cạnh AH chung
\(\widehat{IAH}=\widehat{KHA}\)
\(\Rightarrow\Delta AIH=\Delta HKA\) (Cạnh huyền - góc nhọn)
\(\Rightarrow IA=HK.\)
c) Xét tam giác IAH và tam giác HKI có:
\(\widehat{AIH}=\widehat{KHI}=90^o\)
Cạnh IH chung
\(IA=HK\)
\(\Rightarrow\Delta AIH=\Delta KHI\) (Hai cạnh góc vuông)
\(\Rightarrow AH=IK.\)
d) Ta thấy ngay các cặp góc so le trong bằng nhau nên \(\Delta IOA=\Delta KOH\left(g-c-g\right)\Rightarrow OI=OK,OA=OH\)
Xét tam giác vuông IAH có IO là trung tuyến ứng với cạnh huyền nên OH = OA = OI.
Vậy nên OA = OI = OH = OK.
e)
1. Nếu tam giác ABC cân thì AH là đường cao đồng thời trung tuyến. Vậy thì AH = BH = CH.
Xét tam giác cân BHA có HI là đường cao nên đồng thời là đường trung tuyến. Vậy nên I là trung điểm AB.
Hoàn toàn tương tự ta có K là trung điểm AC.
2. Tam giác ABC vuông cân tại A nên \(\widehat{ACB}=45^o\)
IA = AB/2; AK = AC/2 mà AB = AC nên AI = AK.
Vậy thì tam giác IAK cũng vuông cân tại A.
Vậy nên \(\widehat{AKI}=45^o\)
Từ đó ta có \(\widehat{AKI}=\widehat{ACB}=45^o\)
Chúng lại ở vị trí đồng vị nên suy ra IK // BC.
f) Ta có AM = MC nên \(\widehat{MAC}=\widehat{MCA}\)
Lại có \(\widehat{MCA}=\widehat{AHK}\) (Cùng phụ với góc \(\widehat{KHC}\) )
Suy ra \(\widehat{MAC}=\widehat{AHK}\)
Lại có \(\widehat{OKA}=\widehat{OHA}\)
Vậy nên \(\widehat{MAK}+\widehat{OKA}=\widehat{AHK}+\widehat{IHA}=90^o\)
Gọi J là giao điểm của AM và IK thì \(\widehat{AJK}=90^o\) hay \(KI\perp AM\)
+ Vì O là giao điểm của ba đường phân giác trong tam giác ABC nên O là tâm của đường tròn nội tiếp tam giác ABC nên đáp án A sai.
+ Tam giác ABC vuông tại A có F là trung điểm của BC nên AF là đường trung tuyến ứng với cạnh huyền
Do đó: AF = 1 2 BC (trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
Suy ra AF = FC = FB
Nên F cách đều ba đỉnh A, B, C
Do đó F là tâm đường tròn ngoại tiếp tam giác ABC.
+ Vì D ≠ E ≠ F và chỉ có một đường tròn ngoại tiếp tam giác ABC nên đáp án B, C sai và D đúng.
Chọn đáp án D