K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét \(\Delta\)ABD và \(\Delta\)FBD có

BAD=BFD (=90 độ)

ABD=FBD (BD là tia pg của ABC)

BD là cạnh chung

Do đó \(\Delta\)ABD=\(\Delta\)FBD(chgn)

b)Ta có  \(\Delta\)ABD=\(\Delta\)FBD(cmt)

\(\Rightarrow\)AB=FB(2 cạnh t/ứ)

\(\Rightarrow\Delta ABFcântạiB\)

Xét \(\Delta\)ABF cân tại B có : BD là pg ABC hay BD là pg ABF

\(\Rightarrow\)BD đồng thời là đường trung trực của đoạn thẳng À

c)Vì \(\Delta\) DFC vuông tại F

\(\Rightarrow\)cạnh huyền DC là cạnh lớn nhất của \(\Delta\) DFC

\(\Rightarrow\)DC>FD

Mà AD=FD (vì \(\Delta\)ABD=\(\Delta\)FBD)

Nên AD<DC

d) Xét \(\Delta\)ADE và \(\Delta\)FDC có

          DAE=DFC(=90 độ)

          AE=CF(gt)

          AD=FD(cmt)

Do đó\(\Delta\)ADE=\(\Delta\)FDC(2 cạnh góc vuông)

         \(\Rightarrow\)ADE=FDC(2 góc t./ứ)

Mà ADE+EDC=180 độ

     CDF+EDC=180 độ

Hay EDF=180 độ

\(\Rightarrow\)E,D,F thẳng hàng

24 tháng 5 2021

a)xét ΔABD và ΔFED có:

\(\widehat{BAD}=\widehat{BFD}=90^o\)

BD là cạnh chung

\(\widehat{ABD}=\widehat{FBD}\)(BD là phân giác của \(\widehat{ABF}\))

⇒ΔABD=ΔFED(c.huyền.g.nhọn)

b)gọi I là giao điểm của AF và BD

xét ΔABI và ΔFBI có:

BF=AB(ΔABD=ΔFED)

BI là cạnh chung

\(\widehat{ABI}=\widehat{FBI}\)(BD là phân giác của \(\widehat{ABF}\))

⇒ΔABI=ΔFBI(c-g-c)

\(\widehat{BIA}=\widehat{BIF}\)(2 góc tương ứng)(1)

  

Mà \(\widehat{BIA}+\widehat{BIF}=180^o\)(2 góc kề bù)(2)

từ (1) và (2) ⇒\(\widehat{BIA}=\widehat{BIF}=\dfrac{180^o}{2}=90^o\)

vì ΔABI=ΔFBI⇒IA=IF

Do đó:BD là trung trực của AF(đ.p.cm)

c)xét ΔDCF có

DC là cạnh huyền

⇒DC>DF

Mà DF=AD

⇒DC>AD

d)Ta có:

AB=DF(ΔABD=ΔFED)

Mà AE=FC

⇒AB+AE=DF+FC

hay BE=DC

xét ΔBDC và ΔBDE có:

BE=DC(ch/m trên)

\(\widehat{EBD}=\widehat{CBD}\)(BD là phân giác của \(\widehat{EBC}\))

BD là cạnh chung

⇒ ΔBDC=ΔBDE(c-g-c)

\(\widehat{BDE}=\widehat{BDC}\)(2 góc tương ứng)

Mà \(\widehat{BDA}=\widehat{BDF}\)(ΔABD=ΔFED)

\(\widehat{BDE}-\widehat{BDA}=\widehat{BDC}-\widehat{BDF}\)

hay \(\widehat{ADE}=\widehat{FDC}\)(đ.p.cm)

ta có:\(\widehat{ADE}+\widehat{CDE}=180^o\)(2 góc kề bù)

Mà \(\widehat{ADE}=\widehat{FDC}\) ⇒\(\widehat{FDC}+\widehat{CDE}=180^o\) 

hay E,D,F thẳng hàng(đ.p.cm)

1 tháng 5 2019

a, xét 2 tam giác vuông AEC và AED có:

            AC=AD(gt)

            AE cạnh chung

=> t.giác AEC=t.giác AED(cạnh huyền-cạnh góc vuông)

=> \(\widehat{CAE}\)=\(\widehat{DAE}\)=> AE là p/g của \(\widehat{CAD}\)<=> AE là p/g của \(\widehat{CAB}\)

b, xét t.giác AIC và t.giác AID có:

           AI cạnh chung

         \(\widehat{IAC}\)=\(\widehat{IAD}\)(theo câu a)

          AC=AD(gt)

=> t.giác AIC=t.giác AID(c.g.c)

=> IC=ID=> I là trung điểm của CD(1)

\(\widehat{AIC}\)=\(\widehat{AID}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIC}\)=\(\widehat{AID}\)=90 độ=> AI\(\perp\)CD(2)

từ (1) và (2) suy ra AE là trung trực của CD

A B C D E I

30 tháng 12 2018

dễ thôi

........

30 tháng 12 2018

tự vẽ hình nha

a, xét TG ADM và ABM có

 AM cạnh chung

DM = BM (gt)

DA = BA (gt)

=>TG ADM = TG ABM(c-c-c)

b, ta có DMA + BMA = 180 (KB)

DMA = BMA (2 góc tương ứng) =>DMA = BMA = 90

=> AK VGóc với DB

27 tháng 2 2020

A B C E D H I

Xét tam giác BCD và tam giác CBE

có BC chung

góc CDB = góc CEB=900

góc EBC=góc DCB ( vì tam giác ABC cân tại A)

suy ra tam giác BCD = tam giác CBE ( cạnh huyền-góc nhọn)  (1)

b)  Từ (1) suy ra góc CBD=góc BCE ( hai góc tương ứng) (2)

Mà góc CBD + góc DBE= góc CBE  (3)

góc BCE+góc ECD = góc BCD  (4) 

góc EBC=góc DCB ( vì tam giác ABC cân tại A)  (5)

Từ (2), (3), (4) , (5) suy ra góc DCE=góc EBD

hay góc IBE = góc ICD

c) Từ (1) suy ra AE=AD (hai cạnh tương ứng)

Xét tam giác vuông ADI và tam giác vuông AEI có 

AI chung, AD=AE (CMT)

suy ra tam giá ADI = tam giác  AEI (cạnh huyền-cạnh góc vuông)

suy ra góc EAI = góc DAI (hai góc tương ứng)

suy ra AI là  tia phân giác của góc BAC

mà tam giác ABC cân tại A

suy ra AI là đường phân giác đồng thời là đường cao

AI vuông góc với BC tại H 

4 tháng 5 2019

A B C D K M Q

a) b) cậu biết làm rồi nhé

c) Vì K là trung điểm cạnh BC ( gt )

\(\Rightarrow DK\)là trung tuyến cạnh BC.

 Vì A là trung điểm của BD

\(\Rightarrow AC\)là trung tuyến cạnh BD

mà DK cắt AC tại M 

\(\Rightarrow M\)là trọng tâm của tam giác BCD.

\(\Rightarrow MC=\frac{2}{3}AC\left(tc\right)\)

( BẠN TỰ THAY VÀO NHA )

4 tháng 5 2019

d) Vì tam giác BCD cân ( cmt )

\(\Rightarrow BC=DC\left(đn\right)\)

Mà AC là  trung tuyến của tam giác BCD ( cmt )

\(\Rightarrow AC\)cũng là đường phân giác của góc BCD .( tc)

\(\Rightarrow\widehat{BCA}=\widehat{DCA}=\frac{1}{2}\widehat{BCD}\)

Xét tam giác BCM và tam giác DCM có:

    \(\hept{\begin{cases}CMchung\\BC=CD\left(cmt\right)\\\widehat{BCA}=\widehat{DCA}\left(cmt\right)\end{cases}\Rightarrow\Delta BCM=\Delta DCM\left(c-g-c\right)}\)

\(\Rightarrow\hept{\begin{cases}BM=DM\left(2canht.ung\right)\left(1\right)\\\widehat{CBM}=\widehat{CDM}\left(2goct.ung\right)\end{cases}}\)

Xét tam giác BMK và tam giác DMQ có:

   \(\hept{\begin{cases}BM=DM\left(cmt\right)\\\widehat{CDM}=\widehat{CBM}\left(cmt\right)\\\widehat{BMK}=\widehat{QMD}\left(2gocdoidinh\right)\end{cases}\Rightarrow\Delta BMK=\Delta DMQ\left(g-c-g\right)}\) 

 \(\Rightarrow MK=MQ\left(2canht.ung\right)\left(2\right)\)

Vì M là trọng tâm của tam giác BCD (cmt)  (4)

 mà DK là trung tuyến của tam giác BCD (cmt)

\(\Rightarrow DM=2.MK\left(tc\right)\left(3\right)\)

Từ (1), (2) và (3) \(\Rightarrow BM=2.MQ\)

\(\Rightarrow BQ\)là trung tuyến của tam giác BCD (5)

Từ (4) và (5) \(\Rightarrow B,M,Q\)thẳng hàng

Bài 1) 

a) Xét ∆ vuông ABK và ∆ vuông EBK ta có : 

AK = KC 

BK chung 

=> ∆ABK = ∆EBK ( ch-cgv)

=> AB = BE

=> ∆ABE cân tại B 

Mà ABK = EBK 

Hay BK là phân giác ABE 

=> ∆ABE cân có BK là phân giác 

=> BK là trung tuyến đồng thời là đường cao

=> BK\(\perp\)AE

b) Gọi H là giao điểm BK và DC 

Xét ∆ vuông AKD và ∆ vuông EKC ta có

AK = KE 

AKD = EKC ( đối đỉnh) 

=> ∆AKD = ∆EKC ( cgv-gn)

=> AD = EC ( tương ứng) 

Mà ∆ABE cân tại B (cmt)

=> AB = AE 

Mà AB + AD = BD 

BE + EC = BC 

=> BD = BC 

=> ∆BDC cân tại B 

=> BDC = \(\frac{180°-B}{2}\)

Vì ∆ABE cân tại B 

=> BAE = \(\frac{180°-B}{2}\)

=> BAE = BDC

Mà 2 góc này ở vị trí đồng vị 

=> AE//DC 

Vì H là giao điểm DC và BK

=> BH là phân giác DBC 

Mà ∆BDC cân tại B (cmt)

=> BK đồng thời là trung tuyến và đường cao

=> BH \(\perp\)DC

Hay BK \(\perp\)DC 

Bài 2)

Vì ∆ABC cân tại A

=> AB = AC 

=> ABC = ACB 

Xét ∆ vuông ABK và ∆ vuông ACE ta có : 

AB = AC 

A chung 

=> ∆ABK = ∆ACE ( ch-gn)

=> ABK = ACE ( tương ứng) 

Xét ∆AOB và ∆AOC ta có : 

AB = AC 

ABK = ACE 

AO chung

=> ∆AOB = ∆AOC (c.g.c)

=> BAO = CAO 

Hay AO là phân giác BAC 

b) Vì ∆AKB = ∆AEC (cmt)

=> AE = AK 

Mà AB = AC 

=>EB = KC

Xét ∆ vuông KOC và ∆ vuông EOB ta có 

EB = KC 

EOB = KOC ( đối đỉnh) 

=> ∆KOC = ∆EOB ( cgv-gn)

=> OB = OC 

=> ∆OBC cân tại O 

c) Xét ∆ cân ABC ta có :

AO là phân giác BAC 

AI là trung tuyến BC 

=> AI đồng thời là phân giác và là đường cao

=> A , O , I thẳng hàng

3 tháng 5 2019

a, áp dụng định lí py-ta-go vào tam giác vuông ta có:

             \(BC^2=AB^2+AC^2\)

=>  \(AC^2=BC^2-AB^2\)

=> \(AC^2\)= 169 - 25 =144 cm

=> AC=12 cm

vậy AC=12 cm

b, xét 2 t.giác vuông ABE và DBE có:

           AB=DB(gt)

           BE cạnh chung

=> t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)

c, vì t.giác ABE=t.giác DBE(câu b) => AE=DE

xét 2 t.giác vuông AEF và DEC có:

         AE=DE

        \(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)

=> t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn kề)

=> È=EC(2 cạnh tương ứng)

d, gọi O là giao điểm của EB và AD

xét t.giác ABO và t.giác DBO có:

          OB cạnh chung

         \(\widehat{ABO}\)=\(\widehat{DBO}\)(t.giác ABE=t.giác DBE)

         AB=BD(gt)

=> t.giác ABO=t.giác DBO(c.g.c)

=> OA=OD=> O là trung điểm của AD(1)

\(\widehat{AOB}\)=\(\widehat{DOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB}\)=\(\widehat{DOB}\)=90 độ => BO\(\perp\)AD(2)

từ (1) và (2) => BE là trung trực của AD

           

A B C D E 5cm 13cm F O

8 tháng 4 2020

Bạn tham khảo tại link dưới đây nhé.

Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath (https://olm.vn/hoi-dap/question/1172749.html) 

Trả lời:

1.a) Vì tam giác ABC cân tại A

=>B=ACD

Mà ACD=ECN(đối đỉnh)

=>B=ECN

Vì AB=AC(tam giác ABC cân tại A)

Mà AC=IC

=>AB=IC

Xét tam giác ABD và tam giác ICE có:

AB=IC(c/m trên)

B=ECN(c/m trên)

BD=CE(gt)

=>tam giác ABD=tam giác ICE(c.g.c)

2.

Xét tam giác BMD và tam giác CEN có:

BDM=CNE(=90 độ)

BD=CE(gt)

B=ECN(c/m trên)

=>tam giác BDM=tam giác CEN(g.c.g)

=>BM=CN(2 cạnh tương ứng)

                                              ~Học tốt!~