Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì AD là đường phân giác của tam giác BAC nên ta có:
\(\dfrac{AB}{AC}=\dfrac{BD}{DC}hay\dfrac{12}{15}=\dfrac{7}{DC}\Rightarrow DC=\dfrac{12}{15}.7=5,6cm\)
Suy ra BC=BD+DC hay BC=7+5,6 \(\Rightarrow BC=12,6cm\)
Vậy BC = 12,6 cm

vi tam giac ABC co AD la pg cua goc A => AB/AC = BD/DC (t/c) =>AB^2/AC^2 = BD^2/DC^2
vi BC=BD+DC=15+20=35
vi tam giac ABC vuong =>AB^2 = BC^2 -AC^2 (py ta go)
=>BC^2 - AC^2/AC^2 = BD^2/DC^2 =>BC^2 x DC^2 - AC^2 x DC^2 =BD^2 x AC^2
hay 35^2 x 20^2 -AC^2 x 20^2 = 15^2 x AC^2
=>490000 = 225AC^2 + 400AC^2 =>625AC^2 =490000 =>AC^2 =784 =>AC=28cm
AB^2 = BC^2 - AC^2 = 35^2 -784 =441cm =>AB=21cm

3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

ABC912D
Ta có: BC = BD + CD = 12 + 9 =21 (cm)
\(\Delta\)ABC vuông tại A
=> \(AB^2+AC^2=BC^2=21^2=441\)(1)
Áp dụng tính chất phân giác ta có:
\(\frac{AB}{AC}=\frac{BD}{DC}=\frac{9}{12}\)
=> \(\frac{AB^2}{AC^2}=\frac{81}{144}\)(2)
Từ (1) , (2) => \(\hept{\begin{cases}AB^2=\frac{3969}{25}\\AC^2=\frac{7056}{25}\end{cases}}\)( có rất nhiều cách để em ra kết quả này., có thể dùng tổng tỉ , hay thế ....)
=> \(\hept{\begin{cases}AB=\frac{63}{5}\\AC=\frac{84}{5}\end{cases}}\)

A B C D E
Giải: a) Xét t/giác ABC vuông tại A (Áp dụng định lí Pi-ta-go)
Ta có: BC2 = AC2 + AB2 = 202 + 152 = 400 + 225 = 625
=> BC = 25
Vậy BC = 25 cm
b) Xét t/giác ABD có góc A = 900 => góc ABD + góc BDA = 900 (t/c của 1 t/giác vuông) (1)
Xét t/giác EDC có góc E = 900 => góc DCE + góc CDE = 900 (t/c của 1 t/giác vuông) (2)
Mà góc BDA = góc CDE (đối đỉnh) (3)
Từ (1) ; (2); (3) suy ra góc ABD = góc ECD
c) Tự lm

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=15^2-12^2=81\)
hay BH=9(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay CH=16(cm)
A B C D 7 cm 15cm (hình vẽ chỉ mang t/c minh họa cho dễ nhìn)
Theo t/c đường phân giác \(\frac{AD}{DC}=\frac{AB}{AC}\Rightarrow AD=\frac{15AB}{AC}=\frac{49-AD}{15+AD}\)
\(\Rightarrow AD^2+16AD-49=0\Rightarrow AD=\sqrt{113}-8\) cm
Èo, bài thế này mà nghĩ mãi mới ra.Ko biết có tính sai chỗ nào không nhưng hướng làm là vậy đó.
Ây ya nhầm, hèn gì số xấu!
\(AD=\frac{15AB}{AC}=\frac{15\left(49-AD^2\right)}{15+AD}\)
Rồi tính tiếp :( mong là lần này ko nhầm