Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(\dfrac{S_{HBA}}{S_{ABC}}=\left(\dfrac{BA}{BC}\right)^2=\dfrac{9}{25}\)
c: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=7.2\left(cm\right)\)
CH=BC-BH=12,8(cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha
~ Hok tốt ~
#JH
a)
Xét tam giác ABC ta có
\(AB^2+AC^2=BC^2\)(định lý py ta go)
144 + 256 = BC2
400 = BC2
BC = 20 ( cm )
Xét tam giác ABC có
BD là đường phân giác của tam giác
nên AD/DC = AB/BC = 16/20 = 4/5
có AD + DC = AC = 16
dễ tìm ra AD = 64/9 (cm)
DC = 80/9 (cm)
b) xét 2 tam giác HBA và ABC
có góc ABC chung
2 góc AHB và CAB bằng nhau cùng bằng 90 độ
nên 2 tam giác HAB và ABC đồng dạng với nhau
c)
có 2 tam giác HAB và ABC đồng dạng với nhau
nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)
d)
có E là hình chiếu của của C trên BD
nên \(CE\perp BD\)
suy ra \(\widehat{BEC}=90^0\)
xét 2 tam giác BHK và BEC
có \(\widehat{BHK}=\widehat{BEC}=90^0\)
\(\widehat{CEB}\)chung
nên 2 tam giác BHK và BEC đồng dạng với nhau
suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)
có 2 tam giác HAB và ABC đồng dạng với nhau
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)
từ (1) và (2) suy ra
\(AB^2=BK\cdot BE\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình thì bạn tự vẽ nha
a)Xét tam giác ABC và tam giá HBA, có:
Góc B chung
Góc BAC = góc BHA
--> Tam giác ABC ~ Tam giác HBA
b)Xét tam giác AHB và tam giác HCA, có
Góc A - góc H
Góc ABH = Góc AHC
-->tam giác AHB ~ tam giác AHC
-->AH/HB = HC/AH
-->AH.AH = HB.HC
-->AH^2=HB.HC(đpcm)
c)
+) Áp dụng định lý PTG vào tam giác vuông ABC, có :
BC^2=AB^2 + AC^2
<--> 6^2 + 8^2 = 100
--> BC = 10(cm)
+)Vì tam giác ABC ~ Tam giác HBA :
AB/HB = BC/BA = AC/HA
-)AB/HB = BC/BA
= 6/HB =10/6
--> HB = 6.6/10
-->HB = 3,6(cm)
-)BC/BA =AC/HA
=10/6 = 8/HA
--> HA = 6.8/10
--> HA = 4,8 (cm)
d) tính tỉ số diện tích thì bạn ghi tỉ số đồng dạng ra rồi bình phương tỉ số đó lên
là đc tỉ số đồng dạng ạ
xét tam giác ABC có BC2=ab2 + ac2
thay số BC2=62+82
BC2=36+64=100
BC=10(cm)
còn lại mình không bít,xin lỗi
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H D E
a) Xét tam giác HBA và tam giác ABC có:
Góc B chung
\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\frac{HB}{AB}=\frac{AB}{CB}\Rightarrow AB^2=BH.BC\)
b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có:
\(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
Áp dụng tính chất tia phân giác trong tam giác ta có:
\(\frac{AD}{DC}=\frac{AB}{BC}=\frac{12}{20}=\frac{3}{5}\)
mà AD + DC = AC = 16 cm nên \(AD=6cm.\)
c) Xét tam giác BEA và tam giác BDC có:
\(\widehat{ABE}=\widehat{CBD}\) (BD là tia phân giác)
\(\widehat{BAE}=\widehat{BCD}\) (Cùng phụ với góc \(\widehat{ABC}\) )
\(\Rightarrow\Delta BEA\sim\Delta BDC\left(g-g\right)\)
\(\Rightarrow\frac{BE}{BD}=\frac{AB}{CB}\)
Lại có \(\frac{AB}{CB}=\frac{AD}{DC}\Rightarrow\frac{BE}{BD}=\frac{AD}{DC}\Rightarrow\frac{DB}{EB}=\frac{DC}{DA}\)
Bài giải :
a) Xét tam giác HBA và tam giác ABC có:
Góc B chung
^BHA=^BAC(=90o)
⇒ΔHBA∼ΔABC(g−g)
⇒HBAB =ABCB ⇒AB2=BH.BC
b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có:
BC=√AB2+AC2=20(cm)
Áp dụng tính chất tia phân giác trong tam giác ta có:
ADDC =ABBC =1220 =35
mà AD + DC = AC = 16 cm nên AD=6cm.
c) Xét tam giác BEA và tam giác BDC có:
^ABE=^CBD (BD là tia phân giác)
^BAE=^BCD (Cùng phụ với góc ^ABC )
⇒ΔBEA∼ΔBDC(g−g)
⇒BEBD =ABCB
Lại có ABCB =ADDC ⇒BEBD =ADDC ⇒DBEB =DCDA
![](https://rs.olm.vn/images/avt/0.png?1311)
4. Có \(\left\{{}\begin{matrix}DF\perp BC\\AH\perp BC\end{matrix}\right.\Rightarrow DF//AH\)
Xét \(\Delta AHC\) có DF//AH
\(\Rightarrow\frac{CF}{FH}=\frac{CD}{DA}\) (1)
Xét \(\Delta ABH\) có BE là phân giác
\(\Rightarrow\frac{BH}{AB}=\frac{HE}{AE}\) (2)
Xét \(\Delta ABC\) có BD là phân giác
\(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}\) (3)
mà \(\frac{AB}{CB}=\frac{BH}{AB}\) và từ (1) ;(2) và (3) \(\Rightarrow\frac{CF}{FH}=\frac{HE}{AE}\)
\(\Rightarrow EF//AC\Rightarrow\Delta HEF\sim\Delta HAC\)
\(\Rightarrow\frac{S_{\Delta HEF}}{S_{\Delta HAC}}=\left(\frac{1}{9}\right)^2=\frac{1}{81}\)
Từ câu a ta có \(AB^2=BC.BH\Rightarrow AB^2=BC.\frac{AB}{3}\Rightarrow BC=3AB\)
Do BD là phân giác góc \(\widehat{B}\Rightarrow\) BE là phân giác \(\widehat{B}\)
\(\Rightarrow\frac{AE}{EH}=\frac{AB}{BH}=3\Rightarrow\frac{AH-EH}{EH}=3\Rightarrow\frac{AH}{EH}=4\Rightarrow AH=4EH\)
Do \(\left\{{}\begin{matrix}AH\perp BC\\DF\perp BC\end{matrix}\right.\) \(\Rightarrow DF//AH\Rightarrow\frac{HF}{HC}=\frac{AD}{AC}\) (1)
Mặt khác theo t/c phân giác:
\(\frac{DC}{AD}=\frac{BC}{AB}=3\Rightarrow\frac{AC-AD}{AD}=3\Rightarrow\frac{AC}{AD}=4\Rightarrow\frac{AD}{AC}=\frac{1}{4}\) (2)
Từ (1), (2) \(\Rightarrow\frac{HF}{HC}=\frac{1}{4}\Rightarrow HC=4HF\)
\(\Rightarrow\frac{S_{HEF}}{S_{HAC}}=\frac{\frac{1}{2}.EH.HF}{\frac{1}{2}AH.HC}=\frac{EH.HF}{AH.HC}=\frac{EH.HF}{4EH.4HF}=\frac{1}{16}\)