Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDMC vuông tại M và ΔDMH vuông tại M có
DM chung
MC=MH
Do đó: ΔDMC=ΔDMH
b: ΔDMC=ΔDMH
=>\(\hat{DCM}=\hat{DHM}\)
mà \(\hat{DCM}=\hat{ABC}\) (ΔABC cân tại A)
nên \(\hat{DHM}=\hat{ABC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên DH//AB
c: Ta có: ΔDMC=ΔDMH
=>DC=DH
Ta có: \(\hat{DHC}+\hat{DHA}=\hat{AHC}=90^0\)
\(\hat{DCH}+\hat{DAH}=90^0\) (ΔAHC vuông tại H)
mà \(\hat{DHC}=\hat{DCH}\) (ΔDHC cân tại D)
nên \(\hat{DHA}=\hat{DAH}\)
=>DH=DA
mà DC=DH
nên DA=DC
=>D là trung điểm của AC
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AH chung
AB=AC
Do đó: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
Xét ΔABC có
BD,AH là các đường trung tuyến
BD cắt AH tại G
Do đó: G là trọng tâm của ΔABC
=>\(GA=\frac23AH;GB=\frac23BD\)
Xét ΔGAB có GA+GB>AB
=>\(\frac23\left(AH+BD\right)>AB\)
=>\(AH+BD>\frac32AB\)

a: Xét tứ giác ADHE co
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
b: IO//AC
AC vuông góc HE
=>IO vuông góc HE
mà ΔOEH cân tại O
nên góc EOI=góc HOI
Xét ΔEOI và ΔHOI có
OE=OH
góc EOI=góc HOI
OI chung
Do đó: ΔEOI=ΔHOI
=>góc EIO=góc HIO
=>IO là phân giác của góc EIH

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: BC=căn 12^2+16^2=20cm
AH=12*16/20=192/20=9,6cm
BH=AB^2/BC=7,2cm
c: góc ANM=90 độ-góc ABN
góc AMN=góc HMB=90 độ-góc NBC
mà góc ABN=góc NBC
nên góc AMN=góc ANM
=>ΔAMN cân tại A

a) Xét tam giác AHD và tam giác CKD có:
AHD=CKD=90
\(D_1=D_2\) (2 góc đối đỉnh)
=> tam giác AHD đồng dạng tam giác CKD (g-g)
=> đpcm
b) Xét tam giác AHB và tam giác CKB có
AHB=BKC=90
ABD=DBC ( BD là tia phân giác ABC)
=> Tam giác AHB đồng dạng CKB (g-g)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)

*Bạn tự vẽ kình nha
a) Xét \(\Delta\) IHC có J, M là trung điểm của IH,IC
=> JM là đường trung bình
=> +) JM = 1/2 HC
+) JM // HC
Có AK // BC mà H thuộc BC => AK // HC
mà JM // HC (cmt)
=>AK // JM
Lại có N là trung điểm của AK => +) N\(\in\)AK
mà AK // JM (cmt) => AN // JM (1)
+) AN = 1/2 AK
Xét tứ giác AKNH có AK // Hc , AH // KC
=> AKNH là hình bình hành => AK = HC
Có : AN = 1/2 AK
JM = 1/2 HC
=> AN = JM (2)
Từ (1) và (2) => tứ giác ANMJ là hình bình hành
Xem lại đề nhà bạn, BI vuông góc với MN thì hơi vô lí, BI vuông góc với AN thôi

1: Xet ΔABC và ΔHBA có
góc ABC chung
góc BAC=góc BHA
=>ΔABC đồng dạng với ΔHBA
2: \(BC=\sqrt{12^2+16^2}=20\)
AH=16*12/20=9,6
BH=12^2/20=7,2
3: góc AMN=góc HMB=90 độ-góc CBN
góc ANM=90 độ-góc ABN
mà góc CBN=góc ABN
nên góc AMN=góc ANM
=>ΔAMN cân tại A

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: Đề sai rồi bạn
MN//AC
AB vuông góc AC
=>MN vuông góc AB
Xét ΔANB có
NM,AH là đường cao
NM cắt AH tại M
=>M là trực tâm
=>BM vuông góc AN
thx bro :)