K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2016

vẽ hình đi bạn

6 tháng 5 2018

A B C H D E

6 tháng 5 2018

ABEH là hình chữ nhật ( có ba góc vuông)

\(\widehat{\Rightarrow AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{ACB}\)(cùng phụ với góc DHC)

\(\Rightarrow\Delta ADE\infty\Delta ABC\left(g.g\right)\)

a: Xét ΔADH vuông tại D và ΔAHB vuông tại H có

\(\hat{DAH}\) chung

Do đó: ΔADH~ΔAHB

=>\(\frac{AD}{AH}=\frac{AH}{AB}\)

=>\(AD\cdot AB=AH^2\left(1\right)\)

=>\(AD=\frac{AH^2}{AB}\)

Xét ΔAEH vuông tại E và ΔAHC vuông tại H có

\(\hat{EAH}\) chung

Do đó: ΔAEH~ΔAHC

=>\(\frac{AE}{AH}=\frac{AH}{AC}\)

=>\(AE\cdot AC=AH^2\left(2\right)\)

=>\(AE=\frac{AH^2}{AC}\)

Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)

=>\(\frac{AD}{AC}=\frac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có

\(\frac{AD}{AC}=\frac{AE}{AB}\)

Do đó: ΔADE~ΔACB

b:

Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\hat{HBA}\) chung

Do đó: ΔBHA~ΔBAC

=>\(\frac{HA}{AC}=\frac{BA}{BC}\)

=>\(AH\cdot BC=AB\cdot AC\)

ΔADE vuông tại A

=>\(S_{ADE}=\frac12\cdot AD\cdot AE=\frac12\cdot\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac12\cdot\frac{AH^4}{AB\cdot AC}=\frac12\cdot\frac{AH^4}{AH\cdot BC}=\frac12\cdot\frac{AH^3}{BC}\)

=>\(S_{ADE}=\frac12\cdot\frac{8^3}{20}=\frac12\cdot\frac{512}{20}=\frac{256}{10}=25,6\left(\operatorname{cm}^2\right)\)

1 tháng 5 2021

A B C 25 H E D

a, Xét tam giác EHA và tam giác HBA ta có ; 

^HEA = ^BHA = 900

^A _ chung 

Vậy tam giác EHA ~ tam giác HBA ( g.g ) (1) 

Xét tam giác HBA và tam giác BCA ta có : 

^BHA = ^CAB = 900

^A _ chung 

Vậy tam giác HBA ~ tam giác BCA ( g.g ) (2) 

Từ (1) ; (2) suy ra : tam giác EHA ~ tam giác ACB 

1 tháng 5 2021
a) Ta có góc AHE +góc HAE=90°(∆HAE có E=90°) Góc HAE+ góc C=90° Suy ra góc AHE=góc C Xét 2tam giác EHA và ACB có Góc EHA=C Góc E= góc A =90° Suy ra 2 tam giác đồng dạng(g.g) Chứng minh ADHE là HCM => Các cạnh đối bằng nhau =>AD=EH Từ 2 tam giác đã cm ở câu trên =>EH/EA=AC/AB Mà EH=AD=>AD/AE=AC/AB (¹) Xét ∆ADE và ∆ACD có Góc A chung Tỉ số (¹) => ∆ADE đồng dạng ∆ACB(c.g.c) b)Vì ADHE là HCM ( câu a) =>DE=AH( đg chéo) Saed/Sabc=(DE/BC)² Vì DE=AH =>Saed/Sabc=(10/25)²=4/25 Sabc=AH.BC/2=10.25/2=125 Vì Saed/Sabc=4/25 thay Sabc =125 =>Saed=125*4/25=20(cm²)