K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

1 ,áp dụng bộ 3 pitago trong tam giác abc  suy ra AC=5 cm dựa vào pitago đảo có : \(5^2+12^2\)= 13 suy ra tam giác ACD vuông tại c  

S tứ giác = SABC  +SADC =1/2 .3.4 +1/2. 5.12=36 cm ^2.

2,bài 2 vẽ hình lâu lém tự làm nha bn 

3,

18 tháng 6 2017

B1 minh da lam dc trc do roi nhung van cam on ban vi da giup do

23 tháng 3

Để giải bài toán này, ta sẽ thực hiện theo từng phần như sau:

a. Tính AH
Trong tam giác vuông ABC, ta có:

  • BH = 4 cm
  • CH = 9 cm Áp dụng định lý Pytago-rơ: \(A B^{2} = B H^{2} + C H^{2}\) \(A B^{2} = 4^{2} + 9^{2} = 16 + 81 = 97\) \(A B = \sqrt{97} \approx 9.85 \&\text{nbsp};\text{cm}\) Vì tam giác ABC vuông tại A, nên AH là đường cao của tam giác. Áp dụng định lý Pytago-rơ: \(A H^{2} + H B^{2} = A B^{2}\) \(A H^{2} + 4^{2} = 97\) \(A H^{2} = 97 - 16 = 81\) \(A H = \sqrt{81} = 9 \&\text{nbsp};\text{cm}\)

b. Chứng minh tam giác ADE đồng dạng với tam giác ACB
Để chứng minh hai tam giác đồng dạng, ta cần chứng minh có ít nhất hai cặp cạnh tỷ lệ với nhau.
Xét tam giác ADE và tam giác ACB:

  • Tam giác ADE và tam giác ACB đều là tam giác vuông.
  • Góc A chung cho cả hai tam giác.
  • Tỷ lệ AE/AC = AD/AB (vì AH là đường cao). Vậy hai tam giác ADE và ACB đồng dạng.

c. Kẻ đường thẳng vuông góc với DE tại E, cắt HC tại M. Tính sin DME
Theo định lý Pytago-rơ, ta có:
\(D M^{2} + M E^{2} = D E^{2}\)
Vì DE vuông góc với EM, nên:
\(s i n D M E = \frac{D M}{D E}\)

28 tháng 7 2019

chịu toán lp 9 mới có lp 7 thôi mà

27 tháng 6 2016

Giúp mình với

27 tháng 6 2016

Giải tam giác nhé em, ta vần vận dụng định lý Pitago và các hệ thức lượng.

Áp dụng đl Pitago ta có: \(BC=\sqrt{AB^2+AC^2}=5\)

Áp dụng hệ thức lượng \(BH=\frac{AB^2}{BC}=1,8\Rightarrow CH=BC-BH=3,2\)

\(AH=\sqrt{BH.CH}=2,4\)

\(sinB=\frac{AC}{BC}=0,8\Rightarrow B\approx53^08'\Rightarrow C\approx36^052'\)

20 tháng 7 2017

\(\hept{\begin{cases}\\\\\end{cases}}\)

26 tháng 8 2020

ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ

Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.

Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó 

\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)

Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:

\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)

26 tháng 8 2020

Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.

Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)

Đến đây dễ rồi nha, làm tiếp thì chán quá :(