Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lap mình hỏng rồi nên mình chụp lên, bạn chịu khó nhìn nha!!!
Chúc bạn học thật tốt!:))

3)kẻ BD vuông góc voi71 BC, D thuộc AC
tam giác ABC cân tại A có AH là Đường cao
suy ra AH là trung tuyến
Suy ra BH=HC
(BD vuông góc BC
AH vuông góc BC
suy ra BD song song AH
suy ra BD/AH = BC/CH = 2
suyra 1/BD = 1/2AH suy ra 1BD^2 =1/4AH^2
tam giác BDC vuông tại B có BK là đường cao
suy ra 1/BK^2 =1/BD^2 +1/BC^2
suy ra 1/BK^2 =1/4AH^2 +1/BC^2
1) \(1+tan^2\alpha=1+\dfrac{sin^2\alpha}{cos^2\alpha}=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\) (đpcm).

Ok!
A B C K
Ta có: \(\dfrac{AK}{KC}=2.\left(\dfrac{AB}{BC}\right)^2-1\)
\(\Leftrightarrow\dfrac{AK}{KC}+1=2.\dfrac{AB^2}{BC^2}\)
\(\Leftrightarrow\dfrac{AK+KC}{KC}=2.\dfrac{AB.AC}{BC^2}\)
\(\Leftrightarrow\dfrac{AC}{KC}=\dfrac{2AB.AC}{BC^2}\) \(\Leftrightarrow\dfrac{1}{KC}=\dfrac{2AB}{BC^2}\)
\(\Leftrightarrow BC^2=KC.2AB\)
\(\Leftrightarrow BK^2+KC^2=2AB.KC\)
\(\Leftrightarrow AB^2-AK^2+KC^2=2AB.KC\)
\(\Leftrightarrow\left(AB-KC\right)^2=AK^2\)
\(\Leftrightarrow AB-KC=AK\)
\(\Leftrightarrow AB=AK+KC=AC\) ( Luôn đúng)
\(\Rightarrowđpcm\)
P/s: Gợi ý câu a:Từ H kẻ đt // AH cắt BC tại I Áp dụng hệ thức 4

HB/HC=1/2
nên HC=2BH
\(\left(\dfrac{AB}{AH}\right)^2=\left(\dfrac{BH\cdot BC}{\sqrt{HB\cdot HC}}\right)^2\)
\(=\dfrac{\left(BH\cdot BC\right)^2}{HB\cdot HC}=\dfrac{\left(BH\cdot3BH\right)^2}{HB\cdot2BH}=\dfrac{9BH^2}{2BH^2}=\dfrac{9}{2}\)

b: \(BE\cdot CF\cdot BC\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AH}=AH^3\)
c: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)
Xét tam giác ABC vuông tại A, có đường cao AH.
Ta có: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
Vì \(AH\cdot BC=AC\cdot AB\) (chứng minh ở câu hỏi trước r)
\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}\Leftrightarrow\dfrac{1}{AH}=\dfrac{BC}{AB\cdot AC}\\ \Leftrightarrow\dfrac{1}{AH^2}=\dfrac{BC^2}{AB^2\cdot AC^2}=\dfrac{AB^2+AC^2}{AB^2\cdot AC^2}\left(pytago\right)\\ \Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)