K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=5^2-3^2=16\)

hay AC=4cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1.8\left(cm\right)\\CH=\dfrac{4^2}{5}=3.2\left(cm\right)\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot5=3\cdot4=12\)

hay AH=2,4cm

Bài 2: 

Ta có: BC=HB+HC

nên BC=3,6+6,4

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3.6\cdot10=36\\AC^2=6.4\cdot10=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)

hay AH=4,8cm

6 tháng 4 2017

Hình khỏi vẽ đi ha.

c/ Xét tam giác ABH và tam giác ACH có:

     góc BHA = góc CHA = 90 độ (gt)

    góc ABH = góc HAC (vì tam giác AHC đồng dạng tam giác BAC)

=> tam giác ABH đồng dạng tam giác ACH (g.g)

=> HA/HC = HB/HA

=> HA.HA = HB.HC

=> HA^2 = HB.HC

22 tháng 2 2020

a) công thức . \(\frac{đáy.chiềucao}{2}\)

b) Áp dụng định lý pitago ta có

\(BC^2=AB^2+AC^2\)

=> AC^2=\(BC^2-AB^2=^{10^2}-6^2=64\)

=>\(AC=8\)

22 tháng 2 2020

A)Xét tam giác ABC vuông tại A(gt),có:

SABC=(AB.AC)/2

B)Xét tam giác ABC vuông tại A(gt),có:

AB^2+AC^2=BC^2(ĐL Pytago)

Thay số:36+AC^×=100

<=>AC=căn64=8cm

Ta có:SABC=(AB.AC)/2

Thay số:SABC=24cm^2

Mà SABC=(AH.BC)/2

=>(AH.BC)/2=24

Thay số:AH=24.2:10=4,8cm

SABC=24CM^2(cmt)

10 tháng 8 2021

a,

pytago trong tam giác ABH

\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)

dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)

pytago cho tam giác ABC

\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)

\(=>HC=BC-HB=8cm\)

b, pytago cho tam giác AHB

\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)

rồi tính AC , CH làm tương tự bài trên

23 tháng 4 2019

câu 2:

a)xét tg HBA và ABC có 

góc AHB=BAC=900

góc B chung

=>tg HBA đồng dạng vs tg ABC(g-g)

b) áp dụng pytago vào tg ABC có 

BC2=AB2+AC2

=>BC2=62+82

=>BC2=36+64

=>BC=\(\sqrt{100}=10cm\)

xét tam giác HBA đd vs tg ABC có

\(\frac{BA}{BC}=\frac{HA}{AC}\Rightarrow\frac{6}{10}=\frac{HA}{8}\Rightarrow HA=\frac{6.8}{10}\)

\(\Rightarrow HA=4,8\)

c) theo tính chất đường phân giác, ta có

\(\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow\frac{BD}{DC}=\frac{6}{8}\Rightarrow\frac{BD}{BD+DC}=\frac{6}{8+6}\)

\(\Rightarrow\frac{BD}{BC}=\frac{6}{14}\)\(\Rightarrow\frac{BD}{10}=\frac{6}{14}\Rightarrow BD=\frac{6.10}{14}\approx4.3\)