Cho tam giác ABC vuông tại A, điểm M thuộc cạnh BC. Qua M vẽ đường thẳng song song vó...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8

a) Q = 3xy(x + 3y) - 2xy(x + 4y) - x²(y - 1) + y²(1 - x) + 36

= 3x²y + 9xy² - 2x²y - 8xy² - x²y + x² + y² - xy² + 36

= (3x²y - 2x²y - x²y) + (9xy² - 8xy² - xy²) + x² + y² + 36

= x² + y² + 36

b) Do x² ≥ 0 với mọi x ∈ R

y² ≥ 0 với mọi x ∈ R

Q = x² + y² + 36 ≥ 36 với mọi x ∈ R

Q nhỏ nhất khi x² + y² = 0

⇒ x = y = 0

Vậy x = y = 0 thì Q nhỏ nhất và giá trị nhỏ nhất của Q là 36

17 tháng 11 2019

A B C D N E M I K 1 2 1 1

Giải: Xét t/giác ABE và t/giác ANM

có: AB = BN (gt)

 \(\widehat{B_1}=\widehat{N_1}\) (slt của AE // MN)

  \(\widehat{B_1}=\widehat{B_2}\) (đối đỉnh)

=> t/giác ABE = t/giác ANM (g.c.g)

=> EA = AM (2 cạnh t/ứng)

Xét tứ giác EBMN có AB = AN (gt)

       EA = MA (cmt)

=> tứ giác EBMN là hình bình hành

có BN \(\perp\)EM (gt)

=> EBMN là hình thoi

Để hình thoi EBMN là hình vuông

<=> EM = BN <=> AB = AM

do AM = MC = 1/2AC

<=> AB = 1/2AC 

<=> AC = 2AB

Vậy để tứ giác EBMN là hình vuông <=> t/giác ABC có AC = 2AB

a: Xét tứ giác AEDF có \(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

nên AEDF là hình chữ nhật

b: Ta có: D và M đối xứng nhau qua AB

nên AB là đường trung trực của DM

=>AB vuông góc với DM tại trung điểm của DM

hay E là trung điểm của DM

Ta có: D và N đối xứng nhau qua AC

nên AClà đường trung trực của DN

=>AC vuông góc với DN tại trung điểm của DN

hay F là trung điểm của DN

Xét ΔABC có 

D là trung điểm của BC

DE//AC

DO đó: E là trung điểm của AB

Xét ΔABC có

D là trung điểm của BC

DF//AB

Do đó: F là trung điểm của CA

Xét tứ giác ADBM có 

E là trung điểm của AB

E là trung điểm của DM

Do đó: ADBM là hình bình hành

mà DA=DB

nên ADBM là hình thoi

Xét tứ giác ADCN có 

F là trung điểm của AC

F là trung điểm của DN

Do đó: ADCN là hình bình hành

mà DA=DC

nên ADCN là hình thoi