Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Để giải bài toán này, ta có thể sử dụng các định lý và tính chất trong hình học Euclid. Dưới đây là cách chứng minh cho từng phần:
a) Chứng minh tam giác AIB = tam giác AIC:
Ta có AB = AC (do đề bài cho)IA = IA (do cùng là một đoạn)IB = IC (do I là trung điểm của BC)Vậy tam giác AIB và tam giác AIC bằng nhau theo nguyên lý cạnh - cạnh - cạnh.b) Chứng minh AI là tia phân giác của góc BAC:
Do tam giác AIB = tam giác AIC nên ∠BAI = ∠CAIVậy AI là tia phân giác của góc BAC.c) Chứng minh IA là tia phân giác của góc HIK:
Do IH vuông góc AB và IK vuông góc AC nên ∠HIK = 90° + ∠BACMà AI là tia phân giác của góc BAC nên ∠HIA = ∠KIA = 1/2 ∠BACVậy ∠HIA + ∠KIA = ∠HIKVậy IA là tia phân giác của góc HIK.a: Xét ΔAIB và ΔAIC có
AB=AC
IB=IC
AI chung
Do đó: ΔAIB=ΔAIC
b: ΔAIB=ΔAIC
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của \(\widehat{BAC}\)
c: Xét ΔAIH vuông tại H và ΔAIK vuông tại K có
AI chung
\(\widehat{HAI}=\widehat{KAI}\)
Do đó: ΔAIH=ΔAIK
=>\(\widehat{HIA}=\widehat{KIA}\)
=>IA là phân giác của \(\widehat{HIK}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{a)}\text{Xét }\Delta ABI\text{ và }\Delta ACI\text{ có:}\)
\(AB=AC\left(gt\right)\)
\(BI=CI\text{(I trung điểm BC)}\)
\(AI\text{ chung}\)
\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)
\(\text{b)Xét }\Delta AIC\text{ và }\Delta DIB\text{ có:}\)
\(AI=DI\left(gt\right)\)
\(\widehat{AIC}=\widehat{DIB}\text{(đối đỉnh)}\)
\(IC=IB\)
\(\Rightarrow\Delta AIC=\Delta DIB\left(c.g.c\right)\)
\(\Rightarrow\widehat{DIB}=\widehat{ICA}\text{(2 góc tương ứng)}\)
\(\text{mà chúng so le trong}\)
\(\Rightarrow AC=BD\)
\(\text{c)Xét }\Delta IKB\text{ và }\Delta IHC\text{ có:}\)
\(\widehat{IKB}=\widehat{IHC}=90^0\)
\(IB=IC\)
\(\widehat{KIB}=\widehat{CIH}\text{(đối đỉnh)}\)
\(\Rightarrow\Delta IKB=\Delta IHC\left(ch-gn\right)\)
\(\Rightarrow IK=IH\)
\(\text{Hình có chỗ nào bạn ko thấy rõ thì ib riêng cho mik nghe:3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trong tam giác ABC có:
∠A + ∠(ABC) + ∠(ACB) = 180o ⇒ ∠(ABC) + ∠(ACB) = 180o - 80o = 100o
Mà BI và CI lâ các tia phân giác nên
∠(ABC) + ∠(ACB) = 2.∠(IBC) + 2.∠(ICB) = 2 (∠(IBC) + ∠(ICB) )
Suy ra ∠(IBC) + ∠(ICB) = 50o
Mà ∠(IBC) + ∠(ICB) + ∠(BIC) = 180o ⇒ ∠(BIC) = 130o.
![](https://rs.olm.vn/images/avt/0.png?1311)
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có hình vẽ:
A B C I H K
a/ Xét tam giác AIB và tam giác AIC có:
BI = IC (GT)
\(\widehat{AIB}\)=\(\widehat{AIC}\) (AI là đường trung trực của BC)
AI : cạnh chung
Vậy tam giác AIB = tam giác AIC (c.g.c)
b/ Ta có: tam giác AIB = tam giác AIC (câu a)
=> \(\widehat{BAI}\)=\(\widehat{CAI}\) (2 góc tương ứng)
=> AI là phân giác \(\widehat{BAC}\) (đpcm)
c/
*Cách 1:
Xét tam giác AHI và tam giác AKI có:
\(\widehat{AHI}\)=\(\widehat{AKI}\) = 900
AI: cạnh chung
\(\widehat{HAI}\)=\(\widehat{KAI}\) (đã chứng minh)
Vậy tam giác AHI = tam giác AKI
(theo trường hợp cạnh huyền góc nhọn)
=> IH = IK (2 cạnh tương ứng)
*Cách 2:
Xét tam giác BHI và tam giác CKI có:
\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác AIB = tam giác AIC)
BI = IC (GT)
\(\widehat{BHI}\)=\(\widehat{CKI}\)=900
Vậy tam giác BHI = tam giác CKI
(theo trường hợp cạnh huyền góc nhọn)
=> IH = IK (2 cạnh tương ứng)
Ở đây mình làm 2 cách nhưng khi vào làm bài bạn viết 1 cách thôi nhé, bạn chọn cách nào dễ hiểu mà làm...^^
đề bài sai bn ơi
ih vuông góc vs ac
vậy làm sao