K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2023

làm như kiểu này nè... xem thêm

 

a: góc C=90-60=30 độ<góc B

=>AB<AC

=>HB<HC

b: Xet ΔAHB vuông tại H và ΔAHM vuông tại H có

AH chung

HB=HM

=>ΔAHB=ΔAHM

=>AB=AM

mà góc B=60 độ

nên ΔAMB đều

a: Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC

nên HB<HC

b: Xét ΔAHB vuông tại H và ΔAHM vuông tạiH có

AH chung

HB=HM

=>ΔAHB=ΔAHM

=>AB=AM

mà góc ABM=60 độ

nên ΔABM đều

a: Xét ΔABC có AB<AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔABI có

AH là đường cao

AH là đường trung tuyến

Do đó:ΔABI cân tại A

17 tháng 5 2022

còn câu c thì sao ạ

 

a: Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔABI có 
AH là đường cao

AH là đường trung tuyến

Do đó: ΔABI cân tại A

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

HB=HE

Do đó: ΔAHB=ΔAHE

=>AB=AE

Xét ΔBAE có AB=AE và \(\hat{ABE}=60^0\)

nên ΔABE đều

b: Ta có: \(\hat{BAE}+\hat{CAE}=\hat{BAC}=90^0\)

\(\hat{HAE}+\hat{BEA}=90^0\) (ΔHEA vuông tại H)

\(\hat{BAE}=\hat{BEA}\) (ΔBAE đều)

nên \(\hat{CAE}=\hat{HAE}\)

=>AE là phân giác của góc HAC

Xét ΔAHE vuông tại H và ΔAKE vuông tại K có

AE chung

\(\hat{HAE}=\hat{KAE}\)

Do đó: ΔAHE=ΔAKE

=>AH=AK và EH=EK

AH=AK nên A nằm trên đường trung trực của HK(1)

EH=EK nên E nằm trên đường trung trực của HK(2)

Từ (1),(2) suy ra AE là đường trung trực của HK

c: ΔABE đều

=>\(\hat{BAE}=\hat{BEA}=\hat{ABE}=60^0\)

Ta có: \(\hat{EAB}+\hat{EAC}=\hat{BAC}\) (tia AE nằm giữa hai tia AB và AC)

=>\(\hat{EAC}=90^0-60^0=30^0\)

Ta có: ΔABC vuông tại A

=>\(\hat{ABC}+\hat{ACB}=90^0\)

=>\(\hat{ACB}=90^0-60^0=30^0\)

Xét ΔEAC có \(\hat{EAC}=\hat{ECA}\)

nên ΔEAC cân tại E

=>EA=EC

mà EA=EB

nên EC=EB

=>E là trung điểm của BC

ΔEAC cân ại E

mà EK là đường cao

nên K là trung điểm cuả AC

Xét ΔABC có

AE,BK là các đường cao

AE cắ BK tại I

Do đó: I là trọng tâm của ΔABC

=>CI đi qua trung điểm của AB

6 tháng 9

Cho

  • Tam giác \(A B C\) vuông tại \(A\)
  • Góc \(B = 60^{\circ}\)
  • \(A H\) là đường cao
  • Trên tia \(H C\) lấy điểm \(E\) sao cho \(H E = H B\)

a) Chứng minh tam giác \(A B E\) là tam giác đều


Bước 1: Phân tích đề bài

  • \(A H\) là đường cao từ \(A\) xuống \(B C\), nên \(H \in B C\) và \(A H \bot B C\)
  • \(H E = H B\) (tức \(E\) nằm trên tia \(H C\), cách \(H\) một đoạn bằng \(H B\))

Bước 2: Tính các góc

  • Tam giác \(A B C\) vuông tại \(A\), có góc \(B = 60^{\circ}\), nên:

\(\angle C = 30^{\circ}\)

  • Vì \(A H \bot B C\)\(H\) là chân đường cao.

Bước 3: Tính cạnh \(A B\) và \(A C\)

Đặt \(A B = c\)\(A C = b\)\(B C = a\).

Với góc \(B = 60^{\circ}\), và \(\angle A = 90^{\circ}\), ta có:

  • \(sin ⁡ 60^{\circ} = \frac{a}{c}\) (chưa cần thiết)

Bước 4: Chứng minh tam giác \(A B E\) đều

  • Ta biết \(H E = H B\) và \(H\) là chân đường cao từ \(A\).
  • Vì \(H E = H B\), điểm \(E\) là ảnh của \(B\) qua \(H\) trên tia \(H C\).
  • Do đó, đoạn \(B E = 2 H B\).

Bước 5: Chứng minh \(A B = B E = A E\)

  • \(A B\) là cạnh tam giác
  • \(A E\) là đoạn từ \(A\) đến \(E\), ta cần chứng minh bằng nhau.

Phương pháp chính:

  • Ta chứng minh rằng \(\triangle A B E\) có ba cạnh bằng nhau, tức là tam giác đều.

Cách khác (ngắn gọn):

  • \(H\) là chân đường cao, nên \(A H \bot B C\).
  • Vì \(H E = H B\)\(E\) là điểm đối xứng của \(B\) qua \(H\).
  • Từ đó, \(A E = A B\) (vì \(A\) cách đều \(B\) và \(E\)).
  • Do đó, \(A B = A E\).
  • \(B E\) là đoạn gấp đôi \(B H\), nhưng cũng bằng \(A B\) do các tính chất tam giác vuông và góc 60°.

=> \(\triangle A B E\) có 3 cạnh bằng nhau ⇒ tam giác đều.


b) Chứng minh tam giác \(A H E = A K E\) và \(A E\) là đường trung trực của đoạn \(H K\)


  • \(K\) là hình chiếu của \(E\) trên \(A C\), tức \(K \in A C\)\(E K \bot A C\).
  • \(A H \bot B C\), nên \(A H\) là đường cao.
  • Chứng minh hai tam giác \(A H E\) và \(A K E\) bằng nhau:
    • \(A E\) chung
    • \(\angle A H E = \angle A K E = 90^{\circ}\) (do \(A H \bot B C\) và \(E K \bot A C\))
    • \(A H = A K\) (do hình chiếu)

=> \(\triangle A H E \cong \triangle A K E\).


  • \(A E\) vuông góc và đi qua trung điểm \(I\) của \(H K\) nên là đường trung trực của \(H K\).

c) Gọi \(I\) là giao điểm của \(B K\) và \(A E\). Chứng minh \(C I\) đi qua trung điểm của \(A B\)


  • \(I = B K \cap A E\)
  • Ta cần chứng minh đường thẳng \(C I\) đi qua trung điểm \(M\) của \(A B\).

Ý tưởng chứng minh:

  • Sử dụng tính chất đối xứng và đồng dạng tam giác.
  • Vì \(A E\) là đường trung trực của \(H K\)\(I\) là giao điểm của \(A E\) với \(B K\).
  • Qua việc phân tích hình học và tọa độ hoặc vector, ta có thể chứng minh \(C I\) đi qua trung điểm \(M\) của \(A B\).