Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
xét tam giác ABE và tam giác ADE
AE chung
góc BAE = góc DAE(AE la tia phân giác của góc E)
AB = AD ( gt)
=> tam giác ABE = tam giac DAE ( c.g.c)
b) xét tam giác ABI và tam giác ADI
AI chung
góc BAE = góc DAE
tam giác ABI=tam giác ADI
=> BI = DI ( 2 cạnh t/ứ )
=> I là trung điểm của BD
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C E D K H - - + + I
a) Xét △AHI và △ADI có:
AH = AD (gt)
AI: chung
IH = ID (I: trung điểm HD)
=> △AHI = △ADI (c.c.c)
b) Xét △HAC có: HAC + AHC + HCA = 180o (định lí tổng ba góc △)
=> HAC = 180o - AHC - HCA
=> HAC = 180o - 90o - 30o
=> HAC = 60o (1)
Vì △AHI = △ADI => AH = AD (2 cạnh tương ứng) (2)
Từ (1) và (2) => △ADH đều
c) Vì △AHI = △ADI => IAH = IAD (2 góc tương ứng)
Hay KAH = KAD
Xét △AHK và △ADK có:
AH = AD (cmt)
KAH = KAD (cmt)
AK: chung
=> △AHK = △ADK (c.g.c)
=> AHK = ADK (2 góc tương ứng)
=> ADK = 90o
=> DK \(\perp\) AD (*)
Lại có BAD = 90o => AB \(\perp\) AD (**)
Từ (*) và (**) => AB // DK
d) Vì △HAD đều => HAD = 60o
Mà KAH = KAD (cmt) => KAD = 30o
Xét △KAD có: KAD = KCA (= 30o)
=> △KAC cân tại K
Mà KD \(\perp\)AC
=> KD là đường cao △KAC cũng vừa là đường trung trực
Vậy khi đó thì DA = DC
Mà AH = AD => AH = DC
Lại có HA = HE và AH = DC => HE = DC
Xét △KEH và △KCD có:
EHK = CDK (= 90o)
KH = KD (△KAH = △KAD)
HE = DC (cmt)
=> △KEH = △KCD (2cgv)
=> EKH = CKD (2 góc tương ứng)
Có: EKH + EKC = 180o
=> CKD + CKE = 180o
=> EKD = 180o
=> E, K, D thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
a, AH = AD (gt)
=> tam giác AHD cân tại A (đn)
=> góc ADI = góc AHI (tc)
xét tam giác ADI và tam giác AHI có : AD = AH (gt)
DI = IH do I là trung điểm của DH (gt)
=> tam giác ADI = tam giác AHI (c-g-c)
b, tam giác AHC vuông tại H
=> góc CAH + góc ACH = 90 (đl)
có ACH = 30 (gt)
=> góc CAH = 60
xét tam giác AHD cân tại A (câu a)
=> tam giác AHD đều (dh)
c, tam giác ADI = tam giác AHI (Câu a)
=> góc DAK = góc HAK (đn)
xét tam giác DAK và tam giác HAK có : AK chung
AD = AH (gt)
=> tam giác DAK = tam giác HAK (c-g-c)