Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tự vẽ hình nhé.
Kẻ HI vuông góc với AB tại I, HK vuông góc với AC tại K.
Xét tam giác HMC vuông tại H, ta có: \(\widehat{HMC}+\widehat{C}=90^o\)(1)
Xét tam giác ABC vuông tại A, ta có: \(\widehat{B}+\widehat{C}=90^o\)(2)
Từ (1) và (2) => \(\widehat{HMC}=\widehat{B}\)
Xét tam giác BHI vuông tại I và tam giác MHK vuông tại K có:
BH = MH (gt)
\(\widehat{IBH}=\widehat{HMK}\) (cmt)
=> Tam giác BHI = tam giác MHK
=> IH = HK
Xét tam giác IHA vuông tại I và tam giác KHA vuông tại K có:
cạnh huyển AH chung
IH = HK (cmt)
=> Tam giác IHA = tam giác KHA
=> \(\widehat{IAH}=\widehat{HAK}\)
=> AH là tia phân giác của góc A.

A B C I M K
a, Xét tam giác vuông MHC có :
\(\widehat{CMH}+\widehat{HCM}=90^o\)
Xét tam giác vuông ABC có:
\(\widehat{HIB}+\widehat{HCM}=90^o\)
\(\Rightarrow\widehat{CMH}=\widehat{HIB}\)
Xét 2 tam giác : KHM và IHB
MH = HB ( gt )
\(\widehat{CMN}=\widehat{HBI}\left(cmt\right)\)
\(\widehat{MKH}=\widehat{HIB}=90^o\)
\(\Rightarrow\Delta KHM=\Delta IHB\)
b, \(\Rightarrow HK=HI\)
Xét 2 tam giác : KHA và IHA
KM = IH ( cm a )
AN chung
\(\widehat{HKA}=\widehat{AIM}=90^o\)
\(\Rightarrow\Delta KHA=\Delta IHA\)
\(\Rightarrow\widehat{KAH}=\widehat{HAI}\)
Vậy : AH là tia phân giác góc BAC
a, xet △ vuong mhc co ∠cmh + ∠hcm = 90 do xet △ vuong abc co ∠hbi + ∠hcm = 90 do suy ra ∠cmh = ∠hbi xet △ BHI va △ MHK co ∠CMH = ∠HBI [c/m tr] HM = BH [gt] ∠BIH = ∠MKH [=90 do] ➩ △ BHI = △ MHK [ch-gn] b, tu a co △bhi = △mhk ➩ ih = kh xet △aih va △akh co ah chung ih = kh [c/m tr] ∠aih = ∠akh [= 90 do] ➩ △aih = △kah [ch-cgv] ➩ ∠iah = ∠kah ➩ ah la p/g cua ∠bac

Hình đây nhé mn!!
B A C H M
Mn thg cảm, hình ko đc chính xác cho lắm ^^"
tự ans lun vậy.--"
Từ H kẻ HE \(\perp AB,HF\perp AC\)
Xét \(\Delta HEB\)và \(\Delta AFM\)có:
\(\widehat{BEH}=\widehat{MFH}\left(=90^0\right)\)
HB=HM(gt)
\(\widehat{EBH}=\widehat{HMF}\)(cùng phụ với góc C)
\(\Rightarrow\Delta HEB=\Delta AFM\left(ch-gn\right)\)
=>HE=HF(2 CẠNH t/ư)
Xét \(\Delta HAE\)và \(\Delta HAF\)có:
\(\widehat{HEA}=\widehat{HFA}\left(=90^0\right)\)
HA chung
HE=HF(cmt)
\(\Rightarrow\Delta HAE=\Delta HAF\left(ch-cgv\right)\)
\(\Rightarrow\widehat{EAH}=\widehat{FAH}\)(2 góc t/ư)
\(\Rightarrow AH\)là pg \(\widehat{A}\)(đpcm)

A B C I K M 1 2 H
Kẻ \(HI\perp AB,HK\perp AC\)
Ta có : \(\widehat{HMK}=\widehat{B}\) ( cùng phụ với \(\widehat{C}\) )
Xét \(\Delta HKM\) và \(\Delta HIB\)có :
\(\widehat{K}=\widehat{I}=90^o\)
\(HM=HB\left(gt\right)\)
\(\widehat{HMK}=\widehat{B}\left(cmt\right)\)
Suy ra \(\Delta HKM=\Delta HIB\) ( cạnh huyền - góc nhọn )
\(\Rightarrow HK=HI\) ( 2 cạnh tương ứng )
Xét \(\Delta HIA\) và \(\Delta HKA\)có :
\(\widehat{I}=\widehat{K}=90^o\)
HA : cạnh chung
HI = HK ( cmt)
Suy ra \(\Delta HIA=\Delta HKA\) ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\widehat{A}_1=\widehat{A}_2\)
Do đó AH là tia phân giác của góc A
Chúc bạn học tốt !!!