Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tự vẽ hình nha =)
a) Xét tam giác DAB và tam giác DMB có:
Góc DAB= Góc DMB (=90 độ)
Chung cạnh BD
=> Góc DAB= Góc DMB
b) Vì
Góc DAB= Góc DMB=> BA=BM,DA=DM
=> B,D∈ trung trực AM
=> DB là trung trực AM
c.Ta có: DM⊥BC=>KD⊥BC
CA⊥AB=>CD⊥BK
=>D là trực tâm tam giác BCK
→BD⊥CK
→BN⊥KC
Xét ΔBMK,ΔBAC ta có:
Chung B
=>BM=BA
ˆBMK=ˆBAC(=90độ)
=>ΔBMK=ΔBAC(c.g.c)
=>BK=BC
=>ΔKBC cân tại B

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.

a; Xét ΔDAB vuông tại A và ΔDMB vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔDAB=ΔDMB
b: D nằm giữa A và C
=>AD<AC
c: Xét ΔBKC có
CA,KM là đường cao
CA cắt KM tại D
=>D là trực tâm
=>BD vuông góc KC tại N
Xet ΔBKC có
BN vừa là phân giác, vùa là đường cao
=>ΔBKC cân tại B

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: ΔBAD=ΔBMD
=>BA=BM và DA=DM
=>BD là trung trực của AM
c: Xét ΔBKC có
KM,CA là đường cao
KM cắt CA tại D
=>D là trực tâm
=>BD vuông góc kC tại N

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: AD=MD
mà DM<DC
nên AD<DC
c: Xét ΔDAK vuông tại A và ΔDMC vuông tại M có
DA=DM
góc ADK=góc MDC
=>ΔDAK=ΔDMC
=>DK=DC
=>ΔDKC cân tại D
ΔBKC cân tại B
mà BN là phângíac
nên BN vuông góc KC

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: AD=DH
DH<DC
=>AD<DC
c: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại D
=>D là trực tâm
=>BD vuông góc KC
Sửa đề: DN⊥BC tại N
a: Sửa đề: Chứng minh ΔBAD=ΔBND
Xét ΔBAD vuông tại A và ΔBND vuông tại N có
BD chung
\(\hat{ABD}=\hat{NBD}\) (BD là phân giác của góc ABC)
Do đó: ΔBAD=ΔBND
b: ΔBAD=ΔBND
=>DA=DN
mà DN<DC(ΔDNC vuông tại N)
nên DA<DC
c: Xét ΔBKC có
KN,CA là các đường cao
KN cắt CA tại D
Do đó: D là trực tâm của ΔBKC
=>BD⊥KC tại N
Xét ΔDAK vuông tại A và ΔDNC vuông tại N có
DA=DN
\(\hat{ADK}=\hat{NDC}\) (hai góc đối đỉnh)
Do đó: ΔDAK=ΔDNC
=>DK=DC
=>ΔDKC cân tại D
hi