Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình tự vẽ sắp phải đi học
\(BC=\sqrt{AB^2+AC^2}=\sqrt{16^2+30^2}=34\left(cm\right)\)
Ta có \(\Delta ABC\perp A\)( gt )
\(MC=\sqrt{AC^2+AM^2}=\sqrt{30^2+8^2}=2\sqrt{241}\left(cm\right)\)
\(AM=\frac{1}{2}.BC=\frac{1}{2}.34=17\left(cm\right)\)
\(BD=\sqrt{AB^2+AD^2}=\sqrt{16^2+15^2}=\sqrt{481}\)
Khoảng cách từ G đến các đỉnh bằng 2/3 khoảng cách đường trung tuyến
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi AM là đường trung tuyến của \(\Delta ABC\) thì AM phải đi qua điểm G.
Áp dụng định lí Pitago vào \(\Delta ABC\) vuông tại A, ta có:
\(AB^2+AC^2=BC^2\)
Thay số vào, tính được BC = 13 cm
Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC nên:
\(AM=\frac{1}{2}BC=\frac{1}{2}.13=6,5\left(cm\right)\) (vì BC = 13 cm)
G là trọng tâm của \(\Delta ABC\left(gt\right)\Rightarrow GA=\frac{2}{3}AM=\frac{2}{3}.6.5=\frac{13}{3}\left(cm\right)\)
Vậy \(AM=\frac{13}{3}cm\)
Chúc bạn học tốt.
A B C 16 30 G M N D
\(BC=\sqrt{AB^2+AC^2}\)
\(BC=\sqrt{16^2+30^2}\)
\(BC=34\left(cm\right)\)
Ta có: Tam giác ABC vuông tại A
\(MC=\sqrt{AC^2+AM^2}\)
\(MC=\sqrt{30^2+8^2}\)
\(MC=2\sqrt{241}\left(cm\right)\)
\(AM=\frac{1}{2}.BC=\frac{1}{2}.34=17\left(cm\right)\)
\(BD=\sqrt{AB^2+AD^2}\)
\(BD=\sqrt{16^2+15^2}=\sqrt{481}\left(cm\right)\)
Khoảng cách từ trọng tâm G của tam giác là: 2/3