Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn đáp án C.
Chuẩn hóa BC = 5; AC = 4; AB = 3 →∆ABC vuông tại A.
Khi quay ∆ABC quanh AC, ta được khối nón N 1 có bán kính đáy r = AB = 3, độ dài đường sinh l = BC = 5 suy ra diện tích toàn phần của N 1 là S b = 24 π
Khi quay ∆ABC quanh AB, ta được khối nón N 2 có bán kính đáy r = AC = 4, độ dài đường sinh l = BC = 5 suy ra diện tích toàn phần của N 2 là S c = 36 π
Khi quay ∆ABC quanh BC, ta được khối nón N 3 , N 4 có bán kính đáy là chiều cao của tam giác ABC và bằng 12/5, độ dài đường sinh lần lượt là 3,4 suy ra diện tích toàn phần của khối tròn xoay S a = S 3 + S 4 = 708 π 25
Vậy S C > S a > S b
![](https://rs.olm.vn/images/avt/0.png?1311)
Nón có
r = A B = 3 , h = A C = 4 , l = r 2 + h 2 = 5 ⇒ S t p = πr r + l = 3 π 3 + 5 = 24 π .
Chọn đáp án B.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án C
Bán kính đáy hình nón là a, chiều cao hình nón là
h = 10 a 2 - a 2 = 3 a ⇒ V = 1 3 π a 2 . 3 a = πa 3
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án B.
Khi quay tam giác ABC quanh cạnh AB, ta được khối nón có đỉnh A, đường sinh
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án B.
Khi quay tam giác ABC quanh cạnh AB, ta được khối nón có đỉnh A, đường sinh
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn đáp án D
Phương pháp
Sử dụng công thức tính thể tích khối nón có bán kính đáy r và đương cao h là
Cách giải
Quay tam giác ABC quanh đường thẳng AB ta được khối nón có bán kính đáy r=AC=b và đường cao h=AB=c. Khi đó thể tích của khối nón bằng
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án C.
Ta có A M = A B 2 − B C 2 2 = 2 a . Khi quay tam giác quanh trục MA thì ta được hình nón có bán kính r = a , đường cao h = 2 a . Thể tích khối nón là V = 1 3 π r 2 h = 2 3 π a 3 .