Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình làm mẫu cho bạn câu a) nhé
a) Theo định lí Pytago ta có :
BC2 = AB2 + AC2
152 = AB2 + AC2
AB : AC = 3:4
=> \(\frac{AB}{3}=\frac{AC}{4}\)=> \(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}\)và AB2 + AC2 = 152
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{15^2}{25}=\frac{225}{25}=9\)
\(\frac{AB^2}{3^2}=9\Rightarrow AB^2=81\Rightarrow AB=\sqrt{81}=9cm\)
\(\frac{AC^2}{4^2}=9\Rightarrow AC^2=144\Rightarrow AC=\sqrt{144}=12cm\)
Ý b) tương tự nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
a) HC=BC-BH=25-9=16 (cm)
Xét \(\Delta\)BHA có:
AH2=AB2-BH2=152-92=144
\(AH=\sqrt{144}=12\left(cm\right)\)
Xét \(\Delta\)AHC có:
AC2=AH2+HC2=122+162=400
=> AC=20(cm)
b) AB2+AC2=152+202=625
BC2=252=625
=> BC2=AB2+AC2
=> \(\Delta\)ABC vuông tại A (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(AB=2AC\\ \Rightarrow AB^2=\left(2AC\right)^2=4AC^2\)
Áp dụng định lí Pythagoras vào tam giác ABC vuông tại A, ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow4AC^2+AC^2=15^2\)
\(\Rightarrow5AC^2=225\)
\(\Rightarrow AC^2=225:5=45\\ \Rightarrow AC=\sqrt{45}\left(cm\right)\)
\(\Rightarrow AB=2.AC=2.\sqrt{45}=\sqrt{180}\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
GT | Cho △ABC vuông tại A có AB = 9cm; BC = 15 cm |
KL | a) Tính AC b) H ∈ BC sao cho BA = BH; HI _|_ BC (I ∈ AC). CM : △ABI = △HBI c) HI ∩ BA = {F} . CM : IF = IC d) CM : IF > HI |
9cm 15cm A B C H I F
a) Áp dụng định lí Pythagoras vào △ABC, ta có :
BC2 = AB2 + AC2
\(\Rightarrow\)152 = 92 + AC2
\(\Rightarrow\)AC2 = 144
\(\Rightarrow\)AC = 12
Vậy độ dài cạnh AC là 12 cm
b) Xét △ABI và △HBI có :
IB chung
BA = BH (gt)
\(\Rightarrow\) △ABI = △HBI (cạnh huyền-góc nhọn)
[ĐPCM]
c) Ta có : △ABI = △HBI
\(\Rightarrow\)IA = IH (cặp cạnh tương ứng)
Xét △AIF và △HIC có :
IA = IH (Chứng minh trên)
^AIF = ^HIC (Đối đỉnh)
\(\Rightarrow\)△AIF = △HIC (Cạnh góc vuông-Góc nhọn kề)
\(\Rightarrow\)IF = IC (Cặp cạnh tương ứng)
[ĐPCM]
d) Xét △IBC có H ∈ BC
\(\Rightarrow\)IC > HI
\(\Rightarrow\)IF > HI (Vì IF = IC)
[ĐPCM]
![](https://rs.olm.vn/images/avt/0.png?1311)
Vuông tại A dễ vẽ thôi bn nên mk ko vẽ nữa :))
Áp dụng định lý Py ta go ta có :
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow10^2=6^2+AC^2\)
\(\Leftrightarrow100=36+AC^2\Leftrightarrow AC^2=100-36=84\)
\(\Leftrightarrow AC=8\)
Chu vi Tam giác ABC là
\(6+10+8=24\left(cm\right)\)
Chúc em học tốt
em cam on