Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
Ta có: \(\hat{BAD}+\hat{CAD}=\hat{BAC}=90^0\)
\(\hat{BDA}+\hat{HAD}=90^0\) (ΔHAD vuông tại H)
mà \(\hat{BAD}=\hat{BDA}\) (ΔBAD cân tại B)
nên \(\hat{CAD}=\hat{HAD}\)
=>AD là phân giác của góc HAC
b: Xét ΔAHD và ΔAED có
AH=AE
\(\hat{HAD}=\hat{EAD}\)
AD chung
Do đó: ΔAHD=ΔAED
=>\(\hat{AHD}=\hat{AED}\)
=>\(\hat{AED}=90^0\)
=>ED⊥AC
mà HK⊥AC
nên HK//ED
=>HKED là hình thang
c: ΔAHD=ΔAED
=>DH=DE
=>D nằm trên đường trung trực của HE(1)
Ta có: AH=AE
=>A nằm trên đường trung trực của HE(2)
Từ (1),(2) suy ra AD là đường trung trực của HE
=>AD⊥HE
Xét ΔAEH có
HK,AD là các đường cao
HK cắt AD tại I
Do đó: I là trực tâm của ΔAEH
=>EI⊥AH tại F
mà HC⊥HA
nên EF//HC
=>EFHC là hình thang
Hình thang EFHC có EF⊥FH
nên EFHC là hình thang vuông