K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.a) Tính các tỷ số số AB/ BC và  BC/CDb) Chứng minh BC2 = AB.CD2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.a) Tính tỉ số AB/CDb) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai...
Đọc tiếp

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.

a) Tính các tỷ số số AB/ BC và  BC/CD

b) Chứng minh BC2 = AB.CD

2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.

a) Tính tỉ số AB/CD

b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD 

Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.

a) Chứng minh AD/BD = AE/EC

b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.

Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.

a) Chứng minh AD/AB = AE/AC

b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC

Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:

a) Tỷ số DE/AE

b) Độ dài các đoạn thẳng AE, DE và AD.

Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC

b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.

0

a: Xét ΔBAD có BA=BD

nên ΔBAD cân tại B

Ta có: \(\hat{BAD}+\hat{CAD}=\hat{BAC}=90^0\)

\(\hat{BDA}+\hat{HAD}=90^0\) (ΔHAD vuông tại H)

\(\hat{BAD}=\hat{BDA}\) (ΔBAD cân tại B)

nên \(\hat{CAD}=\hat{HAD}\)

=>AD là phân giác của góc HAC

b: Xét ΔAHD và ΔAED có

AH=AE

\(\hat{HAD}=\hat{EAD}\)

AD chung

Do đó: ΔAHD=ΔAED

=>\(\hat{AHD}=\hat{AED}\)

=>\(\hat{AED}=90^0\)

=>ED⊥AC
mà HK⊥AC
nên HK//ED

=>HKED là hình thang

c: ΔAHD=ΔAED

=>DH=DE

=>D nằm trên đường trung trực của HE(1)

Ta có: AH=AE

=>A nằm trên đường trung trực của HE(2)

Từ (1),(2) suy ra AD là đường trung trực của HE

=>AD⊥HE

Xét ΔAEH có

HK,AD là các đường cao

HK cắt AD tại I

Do đó: I là trực tâm của ΔAEH

=>EI⊥AH tại F

mà HC⊥HA

nên EF//HC

=>EFHC là hình thang

Hình thang EFHC có EF⊥FH

nên EFHC là hình thang vuông

17 tháng 6 2018

ai giup giai bai nay di a