Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài này dễ lắm, mình không có điện thoại chụp hình nên bạn tự vẽ hình lên nhé.
a) Xét \(\Delta ADE\) và \(\Delta AHE:\)
AD=AH(gt)
AE: cạnh chung
DE=HE (E là trung điểm của DH)
=> \(\Delta ADE=\Delta AHE\left(c.c.c\right)\)
=> \(\widehat{AED}=\widehat{AEH}\) (2 góc t/ứ)
Mà \(\widehat{AED}+\widehat{AEH}=180^o\) (2 góc kề bù)
=> \(\widehat{AED}+\widehat{AED}=180^o\)
=> \(2\widehat{AED}=180^o\Rightarrow\widehat{AED}=90^o\)
=> AE vuông góc với HD
b) Xét \(\Delta ADF\) và \(\Delta AHF:\)
AD=AH
AF: cạnh chung
\(\widehat{DAF}=\widehat{HAF}\) (\(\Delta ADE=\Delta AHE\))
=> \(\Delta ADF=\Delta AHF\left(c,g,c\right)\)
b) Vì \(\Delta ADF=\Delta AHF\) (cm ở câu b)
=> \(\widehat{ADF}=\widehat{AHF}=90^o\)
=> \(\widehat{FDC}=90^o\)
=> \(\widehat{FCD}+\widehat{CFD}=90^o\) (1)
Mà \(\Delta ABC\) vuông tại A
=> \(\widehat{ABC}+\widehat{ACB}=90^o\) (2)
Từ (1) và (2) suy ra: \(\widehat{CFD}=\widehat{ABC}\)

a: Xét ΔAHE vuông tại H và ΔADE vuông tại D có
AE chung
AH=AD
=>ΔAHE=ΔADE
=>HE=DE và góc EAH=góc DAE
=>AE là phân giác của góc DAH
AH=AD
EH=ED
=>AE là trung trực của HD
=>I là trung điểm của HD
=>IH=ID
b: Xét ΔEHF vuông tại H và ΔEDC vuông tại D có
EH=ED
góc HEF=góc DEC
=>ΔEHF=ΔEDC
=>EF=EC

a) Xét tam giác ABD và tam giác AHD có:
AB = AH ( gt )
^BAD = ^CAD ( Do AD phân giác )
AD chung
=> Tam giác ABD = tam giác AHD ( c.g.c )
=> ^ABD = ^AHB ( hai góc tương ứng )
b) Xét tam giác AHE và tam giác ABC có:
AB = AH ( gt )
^ABC chung
^ABD = ^AHD ( cmt )
=> Tam giác AHE = tam giác ABC ( g.c.g )

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB

Xét t/g AOB &t/g KOC, ta có:
OC=OB( O là TĐ của BC)
\(\widehat{AOB}\)=\(\widehat{KOC}\)
OA=OK(gt)
=> \(\Delta AOB=\Delta KOC\)(c-g-c)
=> AB= CK(2 cạnh t/ứ)
\(\widehat{BAO}\)=\(\widehat{CKO}\)(2gocs t/ứ)
mà chúng ở vị trí SLT
=>\(AB//Ck\)
Ta có:
\(AB\perp AC\)(\(\Delta ABC\)vuông tại A)
\(AB//CK\)
=> \(AC\perp Ck\)
=> \(\widehat{KCA}=\widehat{BAC}\left(=90^0\right)\)
Xét t/g vuông ABC &t/g vuông CKA, ta có:
AB=CK
AC chung
=> t/g vuông ABC= t/g vuông CKA(2cgv)

a: Xét ΔADH và ΔADB có
AD chung
\(\widehat{DAH}=\widehat{DAB}\)
AH=AB
Do đó: ΔADH=ΔADB
=>\(\widehat{ADH}=\widehat{ADB}\) và \(\widehat{ABD}=\widehat{AHD}\)
Xét ΔAHE vuông tại A và ΔABC vuông tại A có
AH=AB
\(\widehat{AHE}=\widehat{ABC}\)
Do đó: ΔAHE=ΔABC
=>AE=AC
=>ΔAEC cân tại A
Ta có: ΔAEC cân tại A
mà AD là đường phân giác
nên AD\(\perp\)EC
cho tam giác abc vuông tại A (AB<AC) ke Ah vuông với bc tại h trê cạnh ac lấy điểm d sao cho ad=ah gọi e là trung điểm của hd tia ae cắt bc tai f cm a) tam giác ahe= tam giác ade và ae vuông tại hd b) tam giác ahf = tam giác adf c) góc dfc= góc abc
d