Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lời giải:
a. Xét tứ giác $ADHE$ có $\widehat{A}=\widehat{D}=\widehat{E}=90^0$ nên là hcn
$\Rightarrow AH=DE$
$\Rightarrow DE.BC=AH.BC=2S_{ABC}=AB.AC$ (đpcm)
b.
Xét tam giác vuông $ADH$ vuông tại $D$ thì:
$\frac{AD}{AH}=\cos \widehat{DAH}=\cos (90^0-\widehat{HAC})=\cos C$
$\Rightarrow AD=AH\cos C$

a: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)

a.
Do D, E là hình chiếu của H lên AB, AC \(\Rightarrow\angle ADH=\angle AEH=90^0\)
Tam giác ABC vuông tại A nên \(\angle A=90^0\)
=>ADHE là hình chữ nhật (tứ giác có 3 góc vuông)
\(\Rightarrow\angle ADE=\angle AHE\)
Mà \(\angle AHE=\angle ACB\) (cùng phụ ∠CAH)
\(\Rightarrow\angle ADE=\angle ACB\)
Xét hai tam giác ADE và ACB có:
∠A là góc chung
∠ADE=∠ACB (cmt)
=>ΔADE∼ΔACB(g.g)
\(\Rightarrow\frac{AD}{AC}=\frac{AE}{AB}\Rightarrow AD.AB=AE.AC\)
b.
Do ACGF là hcn nên CG||AF =>∠CGN=∠GBF (so le trong)
\(\Rightarrow\cos\angle CGN=\cos\angle GBF\)
\(\Rightarrow\frac{CG}{GN}=\frac{BF}{BG}\)
Mà ACGF là hcn nên CG=AF \(\Rightarrow\frac{AF}{GN}=\frac{BF}{BG}\) (1)
Trong tam giác vuông BGF, áp dụng định lý Pitago:
\(GF^2+BF^2=BG^2\Rightarrow AC^2+BF^2=BG^2\) (do ACGF là hcn nên GF=AC)
\(\Rightarrow\frac{AC^2}{BG^2}+\left(\frac{BF}{BG}\right)^2=1\) (2)
(1);(2) \(\Rightarrow\frac{AC^2}{BG^2}+\frac{AF^2}{GN^2}=1\Rightarrow\frac{1}{BG^2}+\frac{AF^2}{AC^2}\cdot\frac{1}{GN^2}=\frac{1}{AC^2}\)
Trong tam giác vuông ACF, ta có \(\cot CFB=\frac{AF}{AC}=>\frac{AF^2}{AC^2}=\cot^2CFB\)
\(\Rightarrow\frac{\cot^2CFB}{GN^2}+\frac{1}{BG^2}=\frac{1}{AC^2}\)
ai giúp mình trloi cau này với
Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
=>DE=AH
ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>DE*BC=AB*AC