Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có BM là phân giác
nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)
=>\(\dfrac{AM}{6}=\dfrac{CM}{10}\)
=>\(\dfrac{AM}{3}=\dfrac{CM}{5}\)
mà AM+CM=AC=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{8}{8}=1\)
=>\(AM=3\cdot1=3\left(cm\right)\)
b: Xét ΔABM vuông tại A và ΔEBA vuông tại E có
\(\widehat{EBA}\) chung
Do đó: ΔABM đồng dạng với ΔEBA
c: Ta có: ΔABM vuông tại A
=>\(BM^2=BA^2+AM^2\)
=>\(BM^2=6^2+3^2=45\)
=>\(BM=3\sqrt{5}\left(cm\right)\)
Xét ΔBAM vuông tại A có AE là đường cao
nên \(BE\cdot BM=BA^2\)
=>\(BE\cdot3\sqrt{5}=6^2=36\)
=>\(BE=\dfrac{36}{3\sqrt{5}}=\dfrac{12}{\sqrt{5}}\left(cm\right)\)

Bài 1:
a: BC=17cm
AH=120/7(cm)
b: Xét tứ giác AMHN có góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật
Suy ra: AH=MN=120/7(cm)
c: Xét ΔAHB vuông tại H có HM là đường cao
nen \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

a
Do \(MN//BC\) nên theo định lý Thales ta có:\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{MN}{BC}\)
\(\Rightarrow\frac{8}{NC}=\frac{3}{2}\Rightarrow NC=\frac{16}{3}\)
Áp dụng định Pythagoras ta có:\(AM^2+AN^2=MN^2\Rightarrow MN=\sqrt{AM^2+AN^2}=10\)
Mà \(\frac{AM}{MB}=\frac{MN}{BC}\Rightarrow\frac{3}{2}=\frac{10}{BC}\Rightarrow BC=\frac{20}{3}\)
b
Hạ \(NH\perp BC;MG\perp BC\)
Áp dụng định lý Pythagoras vào tam giác ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2=\sqrt{BC^2-AC^2}\Rightarrow AB=\sqrt{10-\left(\frac{16}{3}\right)^2-8^2}=\frac{2\sqrt{17}}{3}\)
Bạn áp dụng định lý Ta Lét ( do ND//AB ) rồi tính được ND
Diện tích tam giác vuông NCD sẽ tính bằng \(\frac{NC\cdot ND}{2}\) ( do đã biết được ND và NC )
Lại có \(S_{NCD}=\frac{NH\cdot CD}{2}\) rồi tính được NH.
Do NH=MG nên tính được diện tích hình bình hành BMND.Hướng là thế đấy,bạn làm tiếp nha,mik nhác quá:(

a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{4}=\dfrac{DC}{3}\)
mà DB+DC=10
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{4}=\dfrac{DC}{3}=\dfrac{DB+DC}{4+3}=\dfrac{10}{7}\)
=>\(DB=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\left(cm\right);DC=3\cdot\dfrac{10}{7}=\dfrac{30}{7}\left(cm\right)\)
b: Ta có: DE\(\perp\)AB
AC\(\perp\)AB
Do đó: DE//AC
Xét ΔABC có DE//AC
nên \(\dfrac{DE}{AC}=\dfrac{BD}{BC}\)
=>\(\dfrac{DE}{6}=\dfrac{40}{7}:10=\dfrac{4}{7}\)
=>DE=24/7(cm)
Ta có: \(\widehat{EDA}=\widehat{DAC}\)(hai góc so le trong, ED//AC)
\(\widehat{DAC}=\widehat{DAE}\)
Do đó: \(\widehat{EDA}=\widehat{EAD}\)
=>EA=ED=24/7(cm)
ΔAEC vuông tại A
=>\(AE^2+AC^2=EC^2\)
=>\(EC^2=\left(\dfrac{24}{7}\right)^2+6^2=\dfrac{2340}{49}\)
=>\(EC=\dfrac{6\sqrt{65}}{7}\left(cm\right)\)

Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.
Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=36+64=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔBAC có BM là phân giác
nên \(\dfrac{AM}{AB}=\dfrac{CM}{CB}\)
=>\(\dfrac{AM}{6}=\dfrac{CM}{10}\)
=>\(\dfrac{AM}{3}=\dfrac{CM}{5}\)
mà AM+CM=AC=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{8}{8}=1\)
=>AM=3*1=3(cm)
b: Xét ΔBEA vuông tại E và ΔBAM vuông tại A có
\(\widehat{EBA}\) chung
Do đó: ΔBEA đồng dạng với ΔBAM
=>\(\dfrac{BE}{BA}=\dfrac{BA}{BM}\)
=>\(BA^2=BE\cdot BM\)