Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=4,5^2+6^2=56,25\)
\(\Leftrightarrow\)\(BC=\sqrt{56,25}=7,5\) cm
Xét \(\Delta ABC\)và \(\Delta DEC\) CÓ:
\(\widehat{BAC}=\widehat{EDC}=90^0\)
\(\widehat{ACB}\) CHUNG
Suy ra: \(\Delta ABC~\Delta DEC\)
\(\Rightarrow\)\(\frac{BC}{EC}=\frac{AC}{DC}\) \(\Rightarrow\)\(EC=\frac{BC.DC}{AC}\)
HAY \(EC=\frac{7,5\times2}{6}=2,5\)
b) Áp dụng định lý Pytago vào tam giác vuông DEC ta có:
\(DE^2=EC^2-DC^2\)
\(\Leftrightarrow\)\(DE^2=2,5^2-2^2=2,25\)
\(\Leftrightarrow\)\(DE=\sqrt{2,25}=1,5\)
Vậy \(S_{DEC}=\frac{DE.DC}{2}=\frac{1,5\times2}{2}=1,5\)CM2
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình:
A B C D E
~~~~
a/ Có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{4,5^2+6^2}=7,5\left(cm\right)\)
Xét tg ABC và tg DEC có:
\(\widehat{BAC}=\widehat{CDE}=90^o\)
\(\widehat{C}:chung\)
=> tg ABC ~ tg DEC (g.g)
=> \(\dfrac{AC}{DC}=\dfrac{BC}{EC}\)=> EC = \(\dfrac{BC\cdot DC}{AC}=\dfrac{7,5\cdot2}{6}=2,5\left(cm\right)\)
b/ Có: \(DE=\sqrt{EC^2-DC^2}=\sqrt{2,5^2-2^2}=1,5\left(cm\right)\)
=> \(S_{\Delta DEC}=\dfrac{1}{2}\cdot DE\cdot DC=\dfrac{1}{2}\cdot1,5\cdot2=1,5\left(cm^2\right)\)
c/ đề đúng ?
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{Xét}:\)\(\Delta CDE\)\(\text{và}\)\(\Delta CAB\)\(,\)\(\text{ta có:}\)
\(\widehat{C}\)\(:\)\(chung\)
\(\widehat{CDE}=\widehat{CAB}=90^o\)
\(\Rightarrow\Delta CDE\text{∽}\Delta CAB\left(g-g\right)\)
\(\Rightarrow\frac{CD}{DE}=\frac{CA}{AB}\)\(\text{hay}\)\(\frac{2}{DE}=\frac{4}{6}\)
\(\Rightarrow DE=\left(6.2\right):4=3\left(cm\right)\)
a) Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:
BC2=AB2+AC2BC2=AB2+AC2
⇔⇔BC2=4,52+62=56,25BC2=4,52+62=56,25
⇔⇔BC=√56,25=7,5BC=56,25=7,5 cm
Xét ΔABCΔABCvà ΔDECΔDEC CÓ:
ˆBAC=ˆEDC=900BAC^=EDC^=900
ˆACBACB^ CHUNG
Suy ra: ΔABC ΔDECΔABC ΔDEC
⇒⇒BCEC=ACDCBCEC=ACDC ⇒⇒EC=BC.DCACEC=BC.DCAC
HAY EC=7,5×26=2,5EC=7,5×26=2,5
b) Áp dụng định lý Pytago vào tam giác vuông DEC ta có:
DE2=EC2−DC2DE2=EC2−DC2
⇔⇔DE2=2,52−22=2,25DE2=2,52−22=2,25
⇔⇔DE=√2,25=1,5DE=2,25=1,5
Vậy SDEC=DE.DC2=1,5×22=1,5SDEC=DE.DC2=1,5×22=1,5CM2
a) Áp dụng định lý Pytagoo vào tam giác vuông ABC ta có:
BC2=AB2+AC2BC2=AB2+AC2
⇔⇔BC2=4,52+62=56,25BC2=4,52+62=56,25
⇔⇔BC=√56,25=7,5BC=56,25=7,5 cm
Xét ΔABCΔABCvà ΔDECΔDEC CÓ:
ˆBAC=ˆEDC=900BAC^=EDC^=900
ˆACBACB^ CHUNG
Suy ra: ΔABC ΔDECΔABC ΔDEC
⇒⇒BCEC=ACDCBCEC=ACDC ⇒⇒EC=BC.DCACEC=BC.DCAC
HAY EC=7,5×26=2,5EC=7,5×26=2,5
b) Áp dụng định lý Pytago vào tam giác vuông DEC ta có:
DE2=EC2−DC2DE2=EC2−DC2
⇔⇔DE2=2,52−22=2,25DE2=2,52−22=2,25
⇔⇔DE=√2,25=1,5DE=2,25=1,5
Vậy SDEC=DE.DC2=1,5×22=1,5SDEC=DE.DC2=1,5×22=1,5CM2