Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
xét tam giác ADH(vuông tại H) và tam giác ADE(vuông tại E) có :
góc HAD= góc EAD( vì AD là phân giác của góc HAC).
AD chung.
do đó: tam giác ADH= tam giác AED( cạnh huyền. Góc nhọn).
=>HD=DE.
xét tam giác HDK và tam giác EDC có:
góc AHD= góc CED=90 độ.
HD=DE.
góc HDK= góc EDC( 2 góc đối đỉnh)
do đó tam giác HDK = tam giác EDC(g-c-g). => DK=DC=> tam giác DKC cân tại D
![](https://rs.olm.vn/images/avt/0.png?1311)
e: I là trực tâm của ΔBAD
=>DI vuông góc AB
=>DI//AC
=>góc BDI=góc ACB
DT là phân giác của góc IDB
=>góc TDI=góc TDB=1/2*góc BDI=1/2*góc ACB
DI//AC
=>góc IDA=góc DAC
AD là phân giác của góc HAC
=>góc DAC=1/2*góc HAC
=>góc IDA=1/2*góc HAC
góc HAC+góc ACB=90 độ
=>góc IDT+góc IDA=1/2*90=45 độ
=>góc TDA=45 độ
=>ΔTDA vuông cân
![](https://rs.olm.vn/images/avt/0.png?1311)
B A C D E H K M
Cm: a) Xét t/giác ABD và t/giác AED
có AB = BE (gt)
góc ABD = góc EBD (gt)
BD : chung
=> t/giác ABD = t/giác AED (c.g.c)
=> AD = ED (hai cạnh tương ứng)
b) Ta có: t/giác ABD = t/giác AED (Cmt)
=> góc A = góc BED (hai góc tương ứng)
Mà góc A = 900 => góc BED = 900
=> DE \(\perp\)BC
AH \(\perp\)BC
=> AH // DE (Đpcm)
c) Ta có: AH // DE (cmt)
=> góc AHD = góc HDE (so le trong)
Xét t/giác AHM và t/giác KDM
có AH = DK (gt)
góc AHM = góc MDC (cmt)
HM = DM (gt)
=> t/giác AHM = t/giác KDM (c.g.c)
=> AM = KM (hai cạnh tương ứng)
=> AM \(\equiv\)MK
=> Ba điểm A, M, K thẳng hàng