Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kẻ AM là trung tuyến tam giác ABC.
Có tam giác ABC vuông tại A
=> AM = \(\frac{1}{2}\)BC (trong tam giác vuông trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền)
=> AM = MC = AC (= \(\frac{1}{2}\)BC)
=> Tam giác AMC đều
=> Góc ACB = 60o
Xét tam giác ABC có góc A + góc B + góc ACB = 180o (Định lí tổng 3 góc của 1 tam giác)
=> 90o + góc B + 60o = 180o
=> góc B = 30o
Có CE là phân giác góc ACB (gt)
=> góc ACE = góc ECB = \(\frac{1}{2}\)góc ACB = 30o
=> góc ECB = góc B (= 30o)
=> Tam giác EBC cân tại E
=> EC = EB (Đpcm)
Kẻ AM là trung tuyến tam giác ABC.
Có tam giác ABC vuông tại A
=> AM = \(\frac{1}{2}\)BC (trong tam giác vuông trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền)
=> AM = MC = AC (= \(\frac{1}{2}\)BC)
=> Tam giác AMC đều
=> Góc ACB = 60o
Xét tam giác ABC có góc A + góc B + góc ACB = 180o (Định lí tổng 3 góc của 1 tam giác)
=> 90o + góc B + 60o = 180o
=> góc B = 30o
Có CE là phân giác góc ACB (gt)
=> góc ACE = góc ECB = \(\frac{1}{2}\)góc ACB = 30o
=> góc ECB = góc B (= 30o)
=> Tam giác EBC cân tại E
=> EC = EB (Đpcm)

1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)