Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn tự vẽ hỉnh nha
tg abe đều suy ra ae=eb=ab và bea=eba=eab=60 độ
tg acf đeu suy raac=cf=af và afc=fca=fac=60 độ
gọi gọi EN,AG,BM là đường cao của tg EBA VÀ CÁC ĐƯỜNG CAO CẮT NHAU TẠI TRỰC TÂM H
CMĐ TG ENB=ENA (CH GN) SUY RA NB=NA(2 CẠNG TƯƠNG ỨNG )
CMĐ TG HNB=HNA(C GC) SUY RA HB=HA(2 CẠNH TƯƠNG ỨNG ) (1)
CMĐ TG HIB=KIC (C G C) SUY RA HB=CK (2 CẠNH TƯƠNG ỨNG) VÀ GÓC HBI=KCI(2)
TỪ (1) VÀ (2) SUY RA HA=CK
CMĐ GÓC EBH=ABH=30 ĐỘ HAN
TA CÓ KCF+ACF+ACB+ICK=360
KCF =360-ACF-ACB-ICK =360-60-ACB-HBI=300-ACB-IBH(3)
TA CÓ GÓC HAF =HAB+BAC+CAF=30+BAC+60=90+BAC = 90+(180-ABC-ACB)=270-ABC-ACB=270-(IBH-30)-ACB =270-IBH+30-ACB=300-ACB-IBH(4)
TỪ (3) VÀ (4) TA SUY RA DC GÓC HAF=KCF
CMĐ TG HAF=KCF(C G C)
CHỖ NÀO BN KO HIỂU Ở BÀI MÌNH TRÌNH BÀY BN CÓ THỂ HỎI MÌNH .TAB CHO MÌNH NẾU ĐÚNG NHA
chỗ cậu chứng minh các tam giác bằng nhau thì hơi dài.Cậu nên áp dụng t/c tam giác đều:
Có H là trực tâm của tam giác ABE
Mà tam giác ABE đều => H cũng là trọng tâm
=> BN=NA ( t/c đường trung tuyến )
MÀ EN vuông góc với AB ( Cách vẽ),BN=NA (cnt)=>N thuộc đường trung trực AB=>AH=BH ( t/c)

C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm

cau a phai la tamgiac HBA = tamgiac AMD phai k
phai thi tu ve hinh :
a, DM | IH (GT) va AH | BH (GT) ma 2 duong thang DM; BH phan biet
=> DM // BH (dl)
=> goc MDB + DBH = 180o (tcp)
co tamgiac ADB vuong can tai A do goc A = 90o (gt) va AD = AB (gt)
=> goc MDA + goc ABH = 90o
ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)
=> goc MAD = goc ABH
xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)
=> tamgiac AMD = tamgiac BHA (ch - gn)
Phải là cho tam giác ABC đều , vẽ ra phía ngoài 2 tam giác ABE và tam giác CEF đều chứ
mình gặp bài này rồi mà