Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tự vẽ hình nha
a) Xét tam giác AMB và tam giác AMC có:
AM chung
góc BAM = góc CAM ( AM là tia p.g góc BAC )
AB=AC(gt)
=> tam giác AMC = tam giác AMC (c-g-c) Đpcm
b) Vì AB=AC => tam giác ABC cân tại A, mà AM là tia phân giác của góc A => M là trung điểm BC
Xét tam giác AMB và tam giác DMC có
AM=DM (gt)
AMB=DMC ( đối đỉnh )
BM=CM ( M là trung điểm BC )
=> tam giác AMB = tam giác DMC (c-g-c)
=> góc BAM = góc CDM ( 2 góc tương ứng )
mà góc BAM và góc CDM ở vị trí so le trong
=>AB // CD

Tớ chỉ có thể trả lời 2 câu thôi( câu c tớ bó)
a.tg ABM va tg NMC có:
AB=MC(M là trung điểm)
AM=MN(M là trung điểm)
góc AMB=NMC(đối đỉnh)
suy ra:tg AMB=NMC(cgc)
b.có tg ABM=NMC(theo câu a), suy ra:góc ABC=góc BCN(2 góc tương ứng) suy ra AB//CN suy ra:góc BDC=góc DCN=90 độ

Ta có hình vẽ:
A B C M D E F
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
Ta có: tam giác ABM = tam giác ACM
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900
=> AM \(\perp\)BC (đpcm)
b/ Xét tam giác BDA và tam giác EDC có:
BD = DE (GT)
\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)
AD = DC (GT)
Vậy tam giác BDA = tam giác EDC (c.g.c)
=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CE (đpcm)
c/ Đã vẽ và kí hiệu trên hình
d/ Xét tam giác AMB và tam giác CMF có:
AM = MF (GT)
\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)
BM = MC (GT)
Vậy tam giác AMB = tam giác CMF (c.g.c)
=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CF
Ta có: AB // CE (1)
Ta có: AB // CF (2)
Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng

A B C M D
Bài làm
a) Xét tam giác ABM và tam giác DCM
Ta có: AM = MD ( giả thiết )
Góc AMD = góc CMD ( hai góc đối đỉnh )
MB = MC ( M là trung điểm của BC )
=> Tam giác ABM = tam giác DCM ( c.g.c )
b) Vì tam giác ABM = tam giác DCM ( theo câu a )
=> góc BAM = góc CDM ( hai góc tương ứng )
mà góc BAM và góc CDM ở vị trí so le trong
=> AB // DC
c) Vì MB = MC ( M là trung điểm của BC )
Góc AMB + AMC = 180o
=> AMB = AMC = 180o/2 = 90o
=> AM vuông góc với BC
# Chúc bạn học tốt #
A B C D M F E
a) Xét hai tam giác ABM và DCM có:
MA = MD (gt)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
MB = MC (gt)
\(\Rightarrow\Delta ABM=\Delta DCM\left(c-g-c\right)\)
b) Vì \(\Delta ABM=\Delta DCM\left(cmt\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CDM}\) (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong
\(\Rightarrow\) AB // DC
c) Xét hai tam giác vuông BEM và CFM có:
MB = MC (gt)
\(\widehat{BME}=\widehat{CMF}\) (đối đỉnh)
\(\Rightarrow\Delta BEM=\Delta CFM\left(ch-gn\right)\)
\(\Rightarrow\) EM = FM
Hay M là trung điểm của EF.
cam on da tra loi