Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn đọc tự vẽ hình.
Xét tam giác \(AA'C\)có \(M,B,B'\)lần lượt nằm trên các cạnh \(AA',A'C,CA\)và \(M,B,B'\)thẳng hàng, do đó theo định lí Menelaus ta có:
\(\frac{MA}{MA'}.\frac{BA'}{BC}.\frac{B'C}{B'A}=1\Leftrightarrow\frac{MA}{MA'}.\frac{BA'}{BC}=\frac{B'A}{B'C}\)
Tương tự khi xét tam giác \(AA'B\)với các điểm \(M,B,B'\)ta cũng có:
\(\frac{MA}{MA'}.\frac{CA'}{CB}=\frac{C'A}{C'B}\)
Suy ra \(\frac{B'A}{B'C}+\frac{C'A}{C'B}=\frac{MA}{MA'}\left(\frac{BA'}{BC}+\frac{CA'}{CB}\right)=\frac{MA}{MA'}.\frac{BC}{BC}=\frac{MA}{MA'}\).
Ta có đpcm.
A' M B C C' B' D A E
\(\frac{AM}{A'M}=\frac{AE}{BA'}=\frac{AD}{A'C}=\frac{AD+AE}{A'C+A'B}=\frac{DE}{BC}\)
\(\Delta CBB'\)có AE // BC , nên \(\frac{AB'}{B'C}=\frac{AE}{BC}\)( hệ quả của định lí Ta-lét);
\(\Delta BCC'\)có DA // BC , nên \(\frac{AC'}{BC'}=\frac{DA}{BC}\)( hệ quả của định lí Ta-lét).
Ta có : \(\frac{AB'}{CB'}=\frac{AC'}{BC'}=\frac{AE}{BC}+\frac{DA}{BC}=\frac{DE}{BC}\)
Do đó : \(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

A B F E D M C
a,Ta có \(FM//AD\left(gt\right)\Rightarrow\widehat{EFA}=\widehat{DAB}\left(đvị\right);\widehat{FEA}=\widehat{DAE}\left(slt\right)\)
mà \(\widehat{DAB}=\widehat{DAE}\Rightarrow\widehat{EFA}=\widehat{FEA}\)
\(\Rightarrow\Delta AFE\)cân tại A
xét \(\Delta BMF\left(AD//MF\right)\)Áp dụng định lí ta-let ta có
\(\frac{BF}{AF}=\frac{BM}{DM}\)
b, \(\Delta ABC\)có AD là đường phân giác
\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}^{^{\left(1\right)}}\)
Ta có AD//EM => \(\widehat{EMD}=\widehat{ADB};\widehat{ADM}=\widehat{EMC}\left(đvị\right)\)
Xét \(\Delta ECM\)và \(\Delta ACD\)có
\(\widehat{C}:chung \)
\(\widehat{EMC}=\widehat{ADC}\left(cmt\right)\)
\(\Rightarrow\Delta ECM\)VÀ \(\Delta ACD\)đồng dạng (g.g)
\(\Rightarrow\frac{CM}{CE}=\frac{CD}{CA}^{^{\left(2\right)}}\)
Chứng minh tương tự ta có
\(\Delta ABD\)và \(\Delta FAM\)đồng dạng (g.g)
\(\Rightarrow\frac{DB}{AB}=\frac{MB}{BF}^{^{\left(3\right)}}\)
Từ (1)(2)(3) \(\Rightarrow\frac{CM}{CE}=\frac{MB}{BF}\) mà CM=MB (gt) nên CE=BF
p/s: câu c để mình nghĩ tiếp

Đặt \(S_{AMB}=a;S_{BMC}=b;S_{CMA}=c\)
Ta có \(\frac{AM}{MA'}+\frac{BM}{MB'}+\frac{MC}{MC'}=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)=\(\frac{a}{b}+\frac{c}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge6\)(cô-si)

a, dễ c/m SHBC/SABC=HA'/AA'
SHAB/SABC=HC'/BB'
SHAC/SABC=HB'/BB'
Cộng theo vế các đẳg thức trên ,ta có đpcm
b, Áp dụng t/c đg phân giác vào các tam giác ABC,ABI,AIC ta có :
BI/IC=AB/AC , AN/NB=AI/BI, CM/MA=IC/AI
nhân từng vế rồi rút gọn BI/IC.AN/NB.CM/MA=1 => AN.NI.CM=BN.IC.AM