K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 giờ trước (18:15)

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\hat{AMB}=\hat{DMC}\) (hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔDMC

=>AB=DC

ΔMAB=ΔMDC

=>\(\hat{MAB}=\hat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC
b: Xét ΔMBA và ΔMCD có

\(\hat{MBA}=\hat{MCD}\) (hai góc so le trong, AB//CD)

MB=MC

\(\hat{BMA}=\hat{CMD}\) (hai góc đối đỉnh)

Do đó: ΔMBA=ΔMCD

=>MA=MD

=>M là trung điểm của AD

7 giờ trước (18:15)

Giải:

Câu a:

Xét tứ giác ABCD có:

AM = MD (gt)

MB = MC (gt)

⇒ Tứ giác ABCD là hình bình hành(tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường thì tứ giác đó là hình bình hành)

Tứ giác ABCD là hình bình hành(cmt)

⇒ AB song song và bằng CD (đpcm)

7 tháng 9 2021

a: Xét tứ giác ABDC có 

M là trung điểm của đường chéo AD

M là trung điểm của đường chéo BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD và AB=CD

31 tháng 8 2019

Đề gì vậy

ngay phân a đã có M là trung điểm AD rồi

giờ câu b lại chứng minh M là trung điểm AD 

??? đề viết kiểu gì vậy

2 tháng 9 2019

LƯU Ý : Phần a và phần b là 2 bài khác nhau , 2 phần ấy không liên quan gì đến nhau cả  , mỗi phần là 1 bài làm khác nhau nhé mọi người <33

a: Xét tứ giác ABDC có 

M là trung điểm của đường chéo AD

M là trung điểm của đường chéo BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD và AB=CD

12 tháng 12 2016

Vẽ hình: (các đoạn thẳng bằng nhau đã kí hiệu trong hình)

A B C D M H X a) Xét ΔABM và ΔDCM có:

AM = MD (gt)

AM = BM (M là trung điểm của BC)

Góc AMB = Góc CMD (đối đỉnh)

=> ΔABM = ΔDCM (c.g.c) (đpcm)

b) Vì ΔABM = ΔDCM (cmt) => Góc BAM = góc CDM (2 góc tương ứng)

Góc BAM = góc CDM mà 2 góc này ở vị trí so le trong => AB//CD (đpcm)

c) Vì Ax//BC => Góc ACB = góc CAH (2 góc so le trong)

Xét ΔABC và ΔAHC có:

AH = BC (gt)

Góc ACB = góc CAH (cmt)

Cạnh chung AC

=> ΔABC = ΔAHC (c.g.c)

Vì ΔABC = ΔAHC => Góc ACH = góc BAC (2 góc tương ứng)

Vì Góc ACH = góc BAC mà 2 góc này ở vị trí so le trong => CH//AB

Vì DC//AB và CH//AB mà 2 cạnh này cùng đi qua điểm C => DC trùng CH (tiên đề Ơ-clit về đường thẳng song song)

Vì DC trùng CH => 3 điểm H, C, D thẳng hàng (đpcm)

14 tháng 3 2020

A B C M K D E x y

trên tia đối của MA lấy K : AM = MK

a.  xét tam giác AMC và tam giác KMB có : MA = MK (cách vẽ)

BM = MC do M là trung điểm của BC (gt)

^AMC = ^KMB (đối đỉnh)

=> BK = AC (1)

    ^CAM = ^MKB mà 2 góc này slt

=> BK // AC 

=> ^BAC + ^ABK = 180 (tcp)              (2)

có : ^DAB + ^ABC + ^EAC + ^DAE = 360 

^DAB = ^EAC = 90

=> ^DAE + ^BAC = 180 và (2)

=> ^DAE = ^ABK 

xét tam giác ABK và tam giác DAE có : AD = AB (gt)

AE = AC (Gt) và (1) => AE = BK

=> tam giác ABK = tam giác DAE (C-g-c)

=> DE = AK (Đn)

AM = AK/2 do AM = MK (cách vẽ)

=> AM = DE/2

b, gọi AM cắt DE tại H 

có : ^DAH + ^DAB + ^BAK = 180 

^DAB = 90

=> ^DAH + ^BAK = 90 

^BAK = ^HDA do tam giác DAE = tam giác ABK (câu a)

=> ^HDA + ^DAH = 90 xét tam giác DHA 

=> ^DHA = 90

=> AM _|_ DE

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNHBài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng : a) AE = BC; b)AB // ECBài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BCBài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân...
Đọc tiếp

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNH

Bài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng :

a) AE = BC; b)AB // EC

Bài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BC

Bài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân giác của góc xOy cắt AB ở C. Chứng minh rằng

a) C là trung điểm của AB

b) AB vuông góc với OC

Bài 4: Cho tam giác ABC có AB = AC, M là trung điểm của cạnh BC. Trên tia đối của tia BC và CB lấy tương ứng hai điểm D và E sao cho BD = CE. Chứng minh rằng AM là tia phân giác của góc BAC và DAE

Bài 5: Cho tam giác ABC có góc A = 1000, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA

a) Tính số đo góc ABK

b) về phía ngoài tam giác ABC, vẽ các đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. Chứng minh rằng: tam giác ABK bằng tam giác DAK

c) Chứng minh MA vuông góc với DE

Bài 6: Cho tam giác ABC, D là trung điểm của cạnh AB, E là trung điểm của cạnh AC. Chứng minh rằng DE//BC và DE = 1/2 BC

Bài 7: Cho tam giác ABC vuông tại A, M là trung điểm của BC. Chứng minh rằng AM =1/2BC

Bài 8: Cho tam giác ABC vuông tại A và AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC

a) Chứng minh rằng DE vuông góc với BC

b) Cho biết 4B = 5C trung điểm của BC. Chứng minh rằng :

a) FH = 2DE.

b) FH vuông góc với DE.

3
15 tháng 12 2016

nhìu quá bn à TTvTT

23 tháng 12 2016

từ từ thui

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0