Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBEC có
M là trung điểm của BC(gt)
F là trung điểm của EC(gt)
Do đó: MF là đường trung bình của ΔBEC(Định nghĩa đường trung bình của tam giác)
Suy ra: MF//BE và \(MF=\dfrac{BE}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay MF//OE
Xét tứ giác OEFM có MF//OE(cmt)
nên OEFM là hình thang(Dấu hiệu nhận biết hình thang)
b) Xét ΔAMF có
E là trung điểm của AF(gt)
EO//MF(cmt)
Do đó: O là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)
Xét ΔAMF có
O là trung điểm của AM(cmt)
E là trung điểm của AF(gt)
Do đó: OE là đường trung bình của ΔAMF(Định nghĩa đường trung bình của tam giác)
Suy ra: \(OE=\dfrac{MF}{2}\)(Định lí 2 về đường trung bình của tam giác)
\(\Leftrightarrow MF=2OE\)
\(\Leftrightarrow\dfrac{BE}{2}=2\cdot OE\)
hay BE=4OE
\(\Leftrightarrow BO=BE-OE=4OE-OE=3OE\)(đpcm)

a: Xét ΔBEC có CM/CB=CF/CE
nên FM//BE
=>FM//OE
=>OEFM là hình thang
b: Xét ΔAMF có EO//MF
nên EO/MF=AE/AF=1/2
=>EO=1/2MF
mà MF=1/2BE
nên EO=1/2*1/2*BE=1/4*BE
=>BE=4*EO
=>BO=3OE

a: Xét ΔANF có
M là trung điểm của AN
E là trung điểm của AF
Do đó: ME là đường trung bình của ΔANF
Suy ra: ME//NF
hay MEFN là hình thang
b: Xét ΔBEM có
N là trung điểm của BM
NI//ME
Do đó: I là trung điểm của BE
hay BI=IE

Giải thích các bước giải:
ta có: Tam giác ABC vuông tại A (gt)
=> AB^2+AC^2=BC^2
6^2+8^2 =BC^2
36+64 =BC^2
100 =BC^2
=>BC=10cm
Tam giác ABC vuông tại A có Am là đg trung tuyến
=> AM=BC/2=10/2=5cm
HÌNH VẼ THÌ BẠN TỰ VẼ NHÉ, HÌNH NÀY DỄ VẼ MÀ NHỈ.
Câu a bạn V (Team BTS) làm rồi nên mình chỉ làm các câu còn lại thôi nhé.
b) Vì DM vuông góc AB, AC vuông góc AB (gt) => DM // AC.
=> DMCA là hình thang mà góc ADM = góc DAC = 90 độ.
Do đó ADMC là hình thang vuông.
c) Xét tam giác ABC ta có: DM // AC (cmt), M là trung điểm BC (AM là trung tuyến)
=> D là trung điểm của AB.
Tứ giác AEBM có AB và EM là hai đường chéo cắt nhau tại trung điểm D. => AEBM là hình bình hành. (1)
Lại xét tam giác AMB cân tại M (MA=MB) có MD là trung tuyến => MD cũng là đường cao=> ME vuông góc AB tại D. (2)
Từ (1) và (2) => AEBM là hình thoi.
d) Vì AEBM là hình thoi => AE // BM, AE = BM.
Mà BM = MC => AE // MC, AE = MC. Do đó AEMC là hình bình hành.
e, Câu e mình không hiểu lắm vì thấy đề bài cứ sai sai làm sao. Mình chỉ chứng minh câu F đối xứng với E qua A thôi nhé.
Gọi I là giao điểm của AC và MF. Vì M đối xứng F qua AC => I là trung điểm MF, AC vuông góc MF tại I.
Chứng minh tương tự câu c ta sẽ được AFMC là hình thoi => AF // MC, AF = MC.
Mà AE // MC, AE = MC (cmt)
=> A, E, F thẳng hàng (tiên đề Ơ-clit) và A là trung điểm của EF (AE=AF)
Vậy F đối xứng E qua A.
Kiểm tra lại đề