Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Dễ chứng minh từ các hình bình hành to nhỏ khác nhau. Từ đó CM O là trung điểm AA(1).
Vậy \(A,O,A_1\)thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a : Kẻ đường cao BH . Ta có :
\(S_{ABC}=\frac{1}{2}.BH.AC=\frac{1}{2}.AB.AC.\sin A\)(đpcm)
Câu b : \(\frac{S_{ABC}}{S_{ADE}}=\frac{\frac{1}{2}.AB.AC.\sin A}{\frac{1}{2}.AD.AE.\sin A}=\frac{AB.AC}{AD.AE}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a) Ta có:
$\frac{S_{AMN}}{S_{AMC}}=\frac{AN}{AC}$
$\frac{S_{AMC}}{S_{ABC}}=\frac{AM}{AB}$
Nhân theo vế thu được:
$\frac{S_{AMN}}{S_{ABC}}=\frac{AN.AM}{AC.AB}$
b)
Vì $AB=AC, AM=CN\Rightarrow AB-AM=AC-CN$ hay $BM=AN$
Do đó:
$\frac{S_{AMN}}{S_{ABC}}=\frac{AM.BM}{AB.AC}=\frac{AM.BM}{AB^2}$
Áp dụng BĐT AM-GM:
$AM.BM\leq \left(\frac{AM+BM}{2}\right)^2=\frac{AB^2}{4}$
$\Rightarrow \frac{S_{AMN}}{S_{ABC}}\leq \frac{AB^2}{4.AB^2}=\frac{1}{4}$
$\Rightarrow S_{AMN}\leq \frac{S_{ABC}}{4}$
Vậy $S_{AMN}$ max bằng $\frac{S_{ABC}}{4}$ khi $AM=BM$ hay $M$ là trung điểm của $AB$, kéo theo $N$ là trung điểm $AC$
Vậy......