Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Kéo dài MP, NP lần lượt cắt BC tại E, D.
Xét tam giác ABC có ME // AC \(\Rightarrow\)\(\frac{AM}{AB}\)= \(\frac{CE}{BC}\)(1)
Xét tam giác ABC có ND // AB \(\Rightarrow\)\(\frac{AN}{AC}\)= \(\frac{BD}{BC}\)(2)
Xét tam giác ABQ có PD//AB \(\Rightarrow\frac{PQ}{AQ}=\frac{DQ}{BQ}\)
Xét tam giấc ACQ có PE//AC\(\Rightarrow\frac{PQ}{AQ}=\frac{QE}{QC}\)
\(\Rightarrow\frac{PQ}{AQ}=\frac{DQ}{BQ}=\frac{QE}{QC}=\frac{DQ+QE}{BQ+QC}=\frac{DE}{BC}\)(3)
Từ (1), (2), (3) suy ra \(\frac{AM}{AB}+\frac{AN}{AC}+\frac{PQ}{AQ}=\frac{CE}{BC}+\frac{DB}{BC}+\frac{DE}{BC}=1\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D O M N P Q
a/
Ta có
MN//AB (gt)
AD//BC=> AM//BN
=> AMNB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Ta có
AB//CD => AP//CQ mà AP = CQ (gt) => APCQ là hbh (Tứ giác có cặp cạnh đối // và = nhau là hbh)
b/
Xét hbh ABCD
OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
Xét hbh APCQ có
IA=IC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> \(I\equiv O\) (đều là trung điểm AC) => M; N; I thẳng hàng
c/ Do \(I\equiv O\) (cmt) => AC; MN; PQ đồng quy tại O
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án:
Giải thích các bước giải:
a) Ta có trong tam giác abc:
AP/AB=11/16,5=2/3
AQ/AC=14/21=2/3
=> AP/AB=AQ/AC
=> PQ//BC ( Định lý Ta Lét đảo ) (đpcm )
b) Đang suy nghĩ, khi nào nghĩ ra mik sẽ giải tiếp
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A
![](https://rs.olm.vn/images/avt/0.png?1311)
Chỉ ra hướng làm thôi nhé ^^!:
a) Áp dụng đường trung bình của tam giác để giải (đáp án: hình thoi)
b) Chứng minh PM và AF cùng vuông góc với BE => đpcm
c) QN cắt AB ở B và AC ở E rồi mà...??!!!,.....,,,...,,?/..,
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A