K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

a, Xét tứ giác BCB'C' có đỉnh C' và B' kề nhau và cùng nhìn đoạn BC dưới 1 góc 90o => Tứ giác BCB'C' là tứ giác nội tiếp

b, kẻ đường kính AK, gọi giao điểm của AO và B'C' là H

Ta có: góc BAK = 1/2 sđ cung BK ( góc nội tiếp) (1)

góc AC'B' = góc B'CB ( góc ngoài ) = 1/2 sđ cung AB ( góc nội tiếp) (2)

Từ (1) và (2) => góc BAK + AC'B' = \(\frac{sđcungBK}{2}+\frac{sđcungAB}{2}\)=sđ cung AK / 2 = 180o /2 = 90o

Theo tổng 3 góc trong 1 tam giác => góc AHC' = 90o

hay AO vuông góc C'B' (đpcm)

19 tháng 3 2023

cho mình hỏi tại sao góc AC'B' = góc B'CB ( góc ngoài ) = 1/2 sđ cung AB . Mình thấy góc AC'B' có bằng góc B'CB đâu 

20 tháng 8

Chúng ta sẽ giải quyết từng phần của bài toán một cách chi tiết.

a) Chứng minh tứ giác \(B C B^{'} C^{'}\) là tứ giác nội tiếp

Dữ kiện:

  • Tam giác \(A B C\) có ba góc nhọn, nội tiếp trong một đường tròn tâm \(O\).
  • \(B B^{'}\) và \(C C^{'}\) là các đường cao của tam giác \(A B C\).
  • \(A O\) cắt đường tròn tại \(D\) và cắt đoạn \(B^{'} C^{'}\) tại \(I\).

Chứng minh:
Để chứng minh tứ giác \(B C B^{'} C^{'}\) là tứ giác nội tiếp, ta cần chứng minh rằng tổng các góc đối diện của tứ giác này bằng \(180^{\circ}\).

  • Xét các góc của tứ giác \(B C B^{'} C^{'}\):
    • \(\angle B C B^{'}\) là góc giữa các cạnh \(B C\) và \(B^{'} C^{'}\).
    • \(\angle B^{'} C^{'} B\) là góc giữa các cạnh \(B^{'} C^{'}\) và \(B C\).
  • Áp dụng định lý góc nội tiếp:
    Do tam giác \(A B C\) nội tiếp trong một đường tròn, ta có:
    • \(\angle B O C = 2 \times \angle B A C\) (do góc tại tâm \(O\) bằng hai lần góc nội tiếp đối diện).
    • \(\angle B C B^{'} = \angle B A C\), vì \(\angle B C B^{'}\) là góc nội tiếp của cung \(B C\).
  • Tính tổng các góc đối diện trong tứ giác \(B C B^{'} C^{'}\):
    • Tổng các góc đối diện \(\angle B C B^{'}\) và \(\angle B^{'} C^{'}\) là \(180^{\circ}\), từ đó ta suy ra tứ giác \(B C B^{'} C^{'}\) là tứ giác nội tiếp.

b) Chứng minh tam giác \(A B^{'} C^{'}\) đồng dạng với tam giác \(A B C\)

Dữ kiện:

  • Tam giác \(A B C\) là tam giác nhọn nội tiếp trong đường tròn tâm \(O\).
  • \(B^{'}\) và \(C^{'}\) là các điểm trên các đường cao \(B B^{'}\) và \(C C^{'}\) của tam giác \(A B C\).

Chứng minh:
Để chứng minh tam giác \(A B^{'} C^{'}\) đồng dạng với tam giác \(A B C\), ta sẽ chứng minh rằng các góc tương ứng của hai tam giác này bằng nhau.

  1. Góc \(\angle A B C = \angle A B^{'} C^{'}\):
    • Do \(B^{'}\) là chân đường cao từ \(B\) và \(C^{'}\) là chân đường cao từ \(C\), ta có góc \(\angle A B C\) và góc \(\angle A B^{'} C^{'}\) đều là góc vuông (vì các đường cao tạo góc vuông với các cạnh tương ứng).
  2. Góc \(\angle A C B = \angle A C^{'} B^{'}\):
    • Tương tự, góc \(\angle A C B\) và \(\angle A C^{'} B^{'}\) đều bằng nhau vì các đường cao và các điểm tương ứng tạo nên các góc vuông.
  3. Tỷ số các cạnh tương ứng bằng nhau:
    • Vì \(A B^{'}\) là một đoạn thẳng trên đường cao và do tính chất của đường cao trong tam giác vuông, các cạnh của tam giác \(A B^{'} C^{'}\) sẽ có tỷ lệ bằng với các cạnh của tam giác \(A B C\), từ đó hai tam giác này đồng dạng.

c) Chứng minh \(B^{'} I D C^{'}\) là tứ giác nội tiếp

Dữ kiện:

  • Tam giác \(A B C\) có ba góc nhọn, nội tiếp trong đường tròn tâm \(O\).
  • \(B B^{'}\) và \(C C^{'}\) là các đường cao của tam giác \(A B C\).
  • \(A O\) cắt đường tròn tại \(D\) và cắt đoạn \(B^{'} C^{'}\) tại \(I\).

Chứng minh:
Để chứng minh tứ giác \(B^{'} I D C^{'}\) là tứ giác nội tiếp, ta sẽ chứng minh rằng tổng các góc đối diện của tứ giác này bằng \(180^{\circ}\).

  1. Xét các góc của tứ giác \(B^{'} I D C^{'}\):
    • \(\angle B^{'} I D\) và \(\angle B^{'} C^{'}\) là hai góc đối diện.
    • \(\angle D I C^{'}\) và \(\angle B^{'} I C\) là hai góc còn lại.
  2. Áp dụng định lý góc nội tiếp:
    • Vì \(A O\) cắt đường tròn tại \(D\), và \(D\) là điểm thuộc cung tròn \(B^{'} C^{'}\), ta có các góc \(\angle B^{'} I D\) và \(\angle D I C^{'}\) là các góc nội tiếp của các cung tròn tương ứng.
    • Do đó, tổng các góc đối diện của tứ giác \(B^{'} I D C^{'}\) sẽ bằng \(180^{\circ}\), suy ra tứ giác \(B^{'} I D C^{'}\) là tứ giác nội tiếp.

Kết luận:

  • Tứ giác \(B C B^{'} C^{'}\) là tứ giác nội tiếp.
  • Tam giác \(A B^{'} C^{'}\) đồng dạng với tam giác \(A B C\).
  • Tứ giác \(B^{'} I D C^{'}\) là tứ giá
20 tháng 8

Tham khảo

a) Xét tứ giác BCB'C' có 

\(\widehat{BC'C}=\widehat{BB'C}\left(=90^0\right)\)

\(\widehat{BC'C}\) và \(\widehat{BB'C}\) là hai góc cùng nhìn cạnh BC

Do đó: BCB'C' là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

26 tháng 2 2017

Tứ giác BCC'B' nội tiếp. Do đó góc AB'C'=góc ACB. Kẻ tiếp tuyến Ax tại A (về phía B đối với bờ AC), suy ra xAB=ACB (góc giữa tiếp tuyến và dây cung). Do đó góc xAB=góc AB'C', suy ra Ax song song B'C'. Mà OA vuông góc Ax, nên OA vuông góc B'C'.

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu