Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E O H M N K
Gọi K là giao của AO với đường tròn
Gọi M và N lần lượt là giao của BD với AC bà CE với AB. Xét tg vuông ABM và ACN có \(\widehat{BAC}\) chung
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Mà sđ\(\widehat{ABD}=\frac{1}{2}\) sđ cung AD và sđ \(\widehat{ACE}=\frac{1}{2}\) sđ cung AE => sđ cung AD = sđ cung AE (1)
Ta có sđ cung AEK = sđ cung ADK (2)
sđ cung EK = sđ cung AEK - sđ cung AE (3)
sđ cung DK = sđ cung ADK - sđ cung AD (4)
Từ (1) (2) (3) và (4) => sđ cung EK = sđ cung DK (*)
sđ \(\widehat{EDK}=\frac{1}{2}\) sđ cung EK và sđ \(\widehat{DEK}=\frac{1}{2}\) sđ cung DK (**)
Từ (*) và (**) \(\Rightarrow\widehat{EDK}=\widehat{DEK}\) => tam giác KDE cân tại K (***)
Mặt khác
\(\widehat{AKE}=\widehat{ACE}\) (Góc nội tiếp cùng chắn cung AE)
\(\widehat{AKD}=\widehat{ABD}\) (Góc nội tiếp cùng chắn cung AD)
Mà \(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(\Rightarrow\widehat{AKE}=\widehat{AKD}\) => AO là phân giác của \(\widehat{DKE}\) (****)
Twg (***) và (****) \(\Rightarrow AO\perp ED\) (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

Xin lỗi bạn nhưng máy mình bị lỗi không vẽ hình được.
c) Tứ giác BEDC là tứ giác nội tiếp (câu a) \(\Rightarrow\widehat{BDE}=\widehat{BCE}\) hay \(\Rightarrow\widehat{BDE}=\widehat{BCQ}\) (1)
Xét (O) có \(\widehat{BCQ}\) và \(\widehat{BPQ}\) là các góc nội tiếp chắn \(\stackrel\frown{BQ}\) \(\Rightarrow\widehat{BCQ}=\widehat{BPQ}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{BDE}=\widehat{BPQ}\left(=\widehat{BCQ}\right)\)
\(\Rightarrow DE//PQ\) (2 góc đồng vị bằng nhau)
d) Kẻ tia tiếp tuyến Ax của (O) (ở đây mình lấy về phía B chứ còn bạn lấy tia tiếp tuyến này vế phía B hay phía C tùy)
Dễ thấy \(\widehat{BAx}\) và \(\widehat{ACB}\) lần lượt là góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{AB}\) \(\Rightarrow\widehat{BAx}=\widehat{ACB}\)
Tứ giác BEDC nội tiếp \(\Rightarrow\widehat{AED}=\widehat{ACB}\) (góc ngoài = góc trong đối)
\(\Rightarrow\widehat{BAx}=\widehat{AED}\left(=\widehat{ACB}\right)\) \(\Rightarrow Ax//DE\) ( 2 góc so le trong bằng nhau)
Vì \(DE//PQ\left(cmt\right)\) \(\Rightarrow Ax//PQ\)\(\left(//DE\right)\)
Mà \(Ax\perp OA\) tại A (do Ax là tiếp tuyến tại A của (O)) \(\Rightarrow OA\perp PQ\) (3)
Xét (O) có OA là 1 phần đường kính và \(OA\perp PQ\left(cmt\right)\)
\(\Rightarrow\) OA đi qua trung điểm của PQ (4)
Từ (3) và (4) \(\Rightarrow\) OA là trung trực của đoạn PQ

Cho tam giác nhọn ABC nội tiếp trong (O;R) có BD và CE là các đường cao. Cho góc A = 60 độ, tính theo R diện tích tứ giác OEAD
Có thể giải như sau:
Tam giác vuông ABD có ^BAD = 60o => AD = AB/2
Dễ thấy tg vuông ABD đồng dạng với tg vuông ACE => AD/AE = AB/AC => AD/AB = AE/AC => tg AED đông dạng tam giác ABC ( vì có chung góc A) => ED/BC = ADAB = 1/2 => ED = BC/2
Dễ tính được BC = RV3 => ED = RV3/2
Mặt khác : Vẽ đường kính AF => BF//CE (vì cùng _I_ với AB). Dễ thấy BCDE nội tiếp => ^BDE = ^BCE (cùng chắn cung BE) = ^CBF ( so le trong) = ^CAF (cùng chắn cung CF của (O) ) => AF _I_ DE ( vì đã có AD _I_ BD)
Vậy S(OEAD) = AO.ED/2 = R^2V3/4 => R = V(4SV3/3)
p/s:tham khảo

a. ta có tứ giác BEHM nội tiếp đường tròn đường kính BH
⇒ góc EBH = góc HME (cùng chắn cung EH) (1)
tứ giác BEDC nội tiếp đường tròn đường kính BC
⇒ góc EBD = góc DCE (cùng chắn cung ED) (2)
tứ giác HMCD nội tiếp đường tròn đường kính HC
⇒ góc HMA = góc DCE (cùng chắn HD) (3)
từ (1) (2) (3) ⇒ HM là đường phân giác của △ EMD (*)
Ta có tứ giác ADMB nội tiếp đường tròn đường kính AB
⇒ góc BAM = góc BDM (cùng chắn cung BM) (4)
tứ giác ADHE nội tiếp đường tròn đường kính AH
⇒ góc EAH = góc EDH (cùng chắn cung EH) (5)
từ (4) (5) ⇒ EDH = HDM
⇒ DH là đường phân giác của △ EDM(**)
từ (*) và (**) ⇒ H là tâm đường tròn nội tiếp △ EDM
b. bạn xem thử đề câu b đúng chưa

1.
Chứng minh được \widehat{CEB} = \widehat{BDC} = 90^{\circ}CEB=BDC=90∘.
Suy ra 44 điểm B,E, D, CB,E,D,C cùng thuộc đường tròn đường kính CBCB nên tứ giác BCDEBCDE nội tiếp.
Có tứ giác BCDEBCDE nội tiếp nên \widehat{DCE} = \widehat{DBE}DCE=DBE (22 góc nội tiếp cùng chắn cung DEDE) hay \widehat{ACQ} = \widehat{ABP}ACQ=ABP.
Trong đường tròn tâm (O)(O), ta có \widehat{ACQ}ACQ là góc nội tiếp chắn cung AQAQ và \widehat{ABP}ABP nội tiếp chắn cung APAP
\Rightarrow \overset{\frown}{AQ}=\overset{\frown}{AP}⇒AQ⌢=AP⌢.
2.
(O)(O) có \overset{\frown}{AQ}=\overset{\frown}{AP}