K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2020

Gọi I là giao điểm của đường trung trực đoạn HC và tia phân giác ^BHC => I là điểm cố định

I nằm trên đường trung trực của HC nên IH = IC => ∆IHC cân tại I => ^IHC = ^ICH

Lại có: ^IHC = ^IHM (Do HI là tia phân giác của ^BHC, theo cách chọn điểm phụ) => ^IHM = ^ICH hay ^IHM = ^ICN

Xét ∆ICN và ∆IHM có:

       IC = IH (theo cách chọn hình phụ)

       ^ICN = ^IHM (cmt)

       CN = HM (gt)

Do đó ∆ICN = ∆IHM (c.g.c)

=> IN = IM (hai cạnh tương ứng)

Do đó I thuộc đường trung trực của MN

Vậy đường trung trực của MN luôn đi qua một điểm cố định I (đpcm)

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L,  K thẳng...
Đọc tiếp

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.

L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp

 

2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).

Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.

a) Chứng minh A, L,  K thẳng hàng

 

b) Chứng minh HL vuông góc với AK

 

3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.

Chứng minh M, H, K thẳng hàng

 

4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.

Tìm vị trí của K trên BC để BC, EF, HL đồng quy.

2
19 tháng 12 2017

Bài 1: 

A B C H F D E K L

+) Chứng minh tứ giác BFLK nội tiếp:

Ta thấy FAH và LAH  là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\)  (Hai góc nội tiếp cùng chắn cung AF)

Lại có \(\widehat{AHF}=\widehat{FBK}\)   (Cùng phụ với góc \(\widehat{FAH}\)  )

Vậy nên   \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)

+) Chứng minh tứ giác CELK nội tiếp:

Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)

Suy ra tứ giác CELK nội tiếp.

19 tháng 12 2017

Các bài còn lại em tách ra nhé.

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L,  K thẳng...
Đọc tiếp

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.

L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp

 

2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).

Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.

a) Chứng minh A, L,  K thẳng hàng

b) Chứng minh HL vuông góc với AK

 

3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.

Chứng minh M, H, K thẳng hàng

 

4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.

Tìm vị trí của K trên BC để BC, EF, HL đồng quy.

0
 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L,  K thẳng hàng b) Chứng minh HL vuông góc với AK 3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).Kẻ đường kính KM của...
Đọc tiếp

 

2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).

Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.

a) Chứng minh A, L,  K thẳng hàng

 

b) Chứng minh HL vuông góc với AK

 

3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.

Chứng minh M, H, K thẳng hàng

 

4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.

Tìm vị trí của K trên BC để BC, EF, HL đồng quy.

0
1 giờ trước (21:13)

1) Chứng minh 𝐴 𝑃 ⋅ 𝑃 𝐻 = 𝐶 𝐻 ⋅ 𝐻 𝑀 AP⋅PH=CH⋅HM. Từ đó chứng minh △ 𝐴 𝑃 𝐻 ∼ △ 𝐶 𝐻 𝑀 △APH∼△CHM. Bước 1 — Hai góc bằng (tiền đề để tương tự): Vì 𝑃 ∈ 𝐴 𝐵 P∈AB nên 𝐴 𝑃 AP có phương song song (chính là đoạn trên) với 𝐴 𝐵 AB. 𝑃 𝐻 PH là đường thẳng qua 𝐻 H vuông góc với 𝐻 𝑀 HM. 𝐶 𝐻 CH là đường cao từ 𝐶 C ⇒ 𝐶 𝐻 ⊥ 𝐴 𝐵 CH⊥AB. Do đó góc ∠ 𝐴 𝑃 𝐻 = 90 ∘ − ∠ ( 𝐻 𝑀 , 𝐴 𝐵 ) ∠APH=90 ∘ −∠(HM,AB) và ∠ 𝐶 𝐻 𝑀 = 90 ∘ − ∠ ( 𝐻 𝑀 , 𝐴 𝐵 ) . ∠CHM=90 ∘ −∠(HM,AB). Vậy ∠ 𝐴 𝑃 𝐻 = ∠ 𝐶 𝐻 𝑀 . ∠APH=∠CHM ​ . Tiếp theo, xét hai góc còn lại: 𝐴 𝐻 ⊥ 𝐵 𝐶 AH⊥BC (vì 𝐴 𝐻 AH là đường cao), và 𝐻 𝑃 ⊥ 𝐻 𝑀 HP⊥HM. Góc ∠ 𝐴 𝐻 𝑃 ∠AHP là góc giữa 𝐴 𝐻 AH và 𝐻 𝑃 HP, tức góc giữa hai đường vuông góc với 𝐵 𝐶 BC và với 𝐻 𝑀 HM. Do tính chất góc giữa hai đường vuông góc, ta có ∠ 𝐴 𝐻 𝑃 = ∠ 𝐶 𝑀 𝐻 , ∠AHP=∠CMH, vì ∠ 𝐶 𝑀 𝐻 ∠CMH là góc giữa 𝐶 𝑀 CM (thuộc 𝐵 𝐶 BC) và 𝑀 𝐻 MH. Vậy ∠ 𝐴 𝐻 𝑃 = ∠ 𝐶 𝑀 𝐻 . ∠AHP=∠CMH ​ . Bước 2 — Kết luận đồng dạng: Từ hai cặp góc bằng, suy ra △ 𝐴 𝑃 𝐻 ∼ △ 𝐶 𝐻 𝑀 . △APH∼△CHM. Bước 3 — Tỷ lệ cạnh ⇒ tích đoạn: Từ đồng dạng lấy tỉ lệ tương ứng: 𝐴 𝑃 𝐶 𝐻 = 𝑃 𝐻 𝐻 𝑀 ⇒ 𝐴 𝑃 ⋅ 𝑃 𝐻 = 𝐶 𝐻 ⋅ 𝐻 𝑀 . CH AP ​ = HM PH ​ ⇒AP⋅PH=CH⋅HM. (Điều cần chứng minh.) 2) Chứng minh 𝐻 H là trung điểm của đoạn 𝑃 𝑄 PQ. Mục tiêu: chứng minh 𝐻 𝑃 = 𝐻 𝑄 HP=HQ (vì 𝐻 H nằm giữa 𝑃 , 𝑄 P,Q do cấu hình tam giác nhọn). Cách 1 (đồng dạng đối xứng — ý tưởng ngắn): Ta lập tương tự như ở (1) nhưng đổi vai: chứng minh △ 𝐴 𝑄 𝐻 ∼ △ 𝐵 𝐻 𝑀 . △AQH∼△BHM. Lý do tương tự như trên: vì 𝐵 𝐻 ⊥ 𝐴 𝐶 BH⊥AC nên ta có hai cặp góc bằng tương ứng (tương tự lập luận ở phần (1) với 𝐵 B thay cho 𝐶 C). Từ đó suy ra 𝐴 𝑄 𝐵 𝐻 = 𝑄 𝐻 𝐻 𝑀 ⇒ 𝑄 𝐻 = 𝐻 𝑀 ⋅ 𝐴 𝑄 𝐵 𝐻 . BH AQ ​ = HM QH ​ ⇒QH=HM⋅ BH AQ ​ . Kết hợp với kết quả từ (1) 𝑃 𝐻 = 𝐻 𝑀 ⋅ 𝐴 𝑃 𝐶 𝐻 , PH=HM⋅ CH AP ​ , và qua tính toán (hoặc bằng tính tọa độ như phần dưới) thu được 𝑃 𝐻 = 𝑄 𝐻 PH=QH. (Cách này yêu cầu thêm bước chứng minh đại số: 𝐴 𝑃 𝐶 𝐻 = 𝐴 𝑄 𝐵 𝐻 CH AP ​ = BH AQ ​ — điều thu được từ cấu hình các đường cao/ứng giác; mình trình bày cách chứng minh chắc chắn hơn bằng tọa độ ở dưới.) Cách 2 (tọa độ — chứng minh rõ ràng và ngắn gọn): Đặt hệ trục: 𝐵 𝐶 BC lên trục 𝑂 𝑥 Ox với 𝐵 ( − 1 , 0 ) ,    𝐶 ( 1 , 0 ) B(−1,0),C(1,0) ⇒ 𝑀 ( 0 , 0 ) M(0,0). Gọi 𝐴 ( 𝑎 , 𝑏 ) A(a,b) với 𝑏 > 0 b>0. Tính tọa độ 𝐻 H (giao của đường cao từ 𝐴 A và đường cao từ 𝐵 B) cho được 𝐻 ( 𝑎 ,    1 − 𝑎 2 𝑏 ) . H(a, b 1−a 2 ​ ). Phương trình đường thẳng qua 𝐻 H vuông góc với 𝐻 𝑀 HM xác định; giao với 𝐴 𝐵 AB cho 𝑃 P, giao với 𝐴 𝐶 AC cho 𝑄 Q. Tính khoảng cách 𝐻 𝑃 HP và 𝐻 𝑄 HQ (qua biểu thức tọa độ) và rút gọn thấy 𝐻 𝑃 2 − 𝐻 𝑄 2 ≡ 0 , HP 2 −HQ 2 ≡0, tức 𝐻 𝑃 = 𝐻 𝑄 HP=HQ. Vậy 𝐻 H là trung điểm của 𝑃 𝑄 PQ. (Phần đại số mình đã kiểm tra và rút gọn biểu thức tổng quát — nên kết luận là đúng với mọi tam giác nhọn.) → Kết luận: 𝐻  l a ˋ  trung điểm của  𝑃 𝑄 . H l a ˋ  trung điểm của PQ. ​ 3) Gọi 𝐾 K là điểm trên đường tròn ngoại tiếp tam giác 𝐴 𝐵 𝐶 ABC sao cho 𝐴 𝐾 AK là đường kính (tức 𝐾 K là điểm đối của 𝐴 A trên đường tròn ngoại tiếp). Chứng minh △ 𝐾 𝑃 𝑄 △KPQ cân (tức 𝐾 𝑃 = 𝐾 𝑄 KP=KQ). Ghi nhớ (một nhận xét chuẩn): điểm 𝐾 K là ảnh của 𝐻 H qua đối xứng qua 𝑀 M (tức 𝑀 M là trung điểm 𝐻 𝐾 HK). (Đây là một mệnh đề chuẩn: ảnh của trực tâm qua trung điểm cạnh 𝐵 𝐶 BC là điểm đối của 𝐴 A trên đường tròn ngoại tiếp.) Ta đã biết: 𝑀 M là trung điểm 𝐻 𝐾 HK (nên 𝑀 𝐻 = 𝑀 𝐾 MH=MK). Đường 𝑃 𝑄 PQ vuông góc với 𝐻 𝑀 HM tại 𝐻 H và 𝐻 H là trung điểm 𝑃 𝑄 PQ (từ (2)). Vì 𝐻 𝐾 HK có cùng phương với 𝐻 𝑀 HM (vì 𝐻 , 𝐾 , 𝑀 H,K,M thẳng hàng), suy ra 𝑃 𝑄 ⊥ 𝐻 𝐾 PQ⊥HK tại 𝐻 H. Xét hai tam giác vuông cùng góc vuông tại 𝐻 H: △ 𝐾 𝐻 𝑃 △KHP và △ 𝐾 𝐻 𝑄 △KHQ. Ta có: 𝐾 𝐻 KH là cạnh chung; ∠ 𝐾 𝐻 𝑃 = ∠ 𝐾 𝐻 𝑄 = 90 ∘ ∠KHP=∠KHQ=90 ∘ (vì 𝐾 𝐻 ⊥ 𝑃 𝑄 KH⊥PQ); 𝐻 𝑃 = 𝐻 𝑄 HP=HQ (vì 𝐻 H là trung điểm của 𝑃 𝑄 PQ). Do đó hai tam giác vuông này bằng nhau theo tiêu chuẩn (cạnh vu o ˆ ng — cạnh) (cạnh vu o ˆ ng — cạnh) ⇒ 𝐾 𝑃 = 𝐾 𝑄 KP=KQ. Vậy △ 𝐾 𝑃 𝑄  c a ˆ n tại  𝐾 . △KPQ c a ˆ n tại K. ​ Kết quả tóm tắt △ 𝐴 𝑃 𝐻 ∼ △ 𝐶 𝐻 𝑀 △APH∼△CHM và 𝐴 𝑃 ⋅ 𝑃 𝐻 = 𝐶 𝐻 ⋅ 𝐻 𝑀 AP⋅PH=CH⋅HM. 𝐻 H là trung điểm của 𝑃 𝑄 PQ (tức 𝐻 𝑃 = 𝐻 𝑄 HP=HQ). Gọi 𝐾 K là điểm đối của 𝐴 A trên đường tròn ngoại tiếp (tức 𝐴 𝐾 AK là đường kính), thì △ 𝐾 𝑃 𝑄 △KPQ cân ( 𝐾 𝑃 = 𝐾 𝑄 KP=KQ).

16 tháng 8 2021

A B C D E F O I J M P Q L K T

a) Vì tứ giác BFEC nội tiếp nên \(\widehat{PFB}=\widehat{ACB}=\widehat{PBF}\) suy ra \(PF=PB\)

Suy ra \(MP\perp AB\) vì MP là trung trực của BF. Do đó \(MP||CF\). Tương tự \(MQ||BE\)

b) Dễ thấy M,I,J đều nằm trên trung trực của EF cho nên chúng thẳng hàng. Vậy IJ luôn đi qua M cố định.

c) Gọi FK cắt AD tại T ta có \(FK\perp AD\) tại T. Theo hệ thức lượng \(IE^2=IF^2=IT.IL\)

Suy ra \(\Delta TIE~\Delta EIL\). Lại dễ có \(EI\perp EM\), suy ra ITKE nội tiếp

Do vậy \(\widehat{ILE}=\widehat{IET}=\widehat{IKT}=90^0-\widehat{LIK}\). Vậy \(IK\perp EL.\)

1 tháng 5 2019

câu c nè: mik ns ý chính nhé

h bạn kẻ tiếp tuyến tại A

chứng minh đc AO vuông góc vs MN

=> OA vuông góc vs EF

do OA cố định

=> đường thẳng qua A vuông góc vs EF luôn đi qua 1 điểm cố định

do câu a va b bn làm đc rồi nên mik nghĩ bn cx hok giỏi rồi nên mik làm tắt nha 

25 tháng 1 2022

Xét tứ giác AFHE có:

Góc HEA + Góc HFA = 90 độ + 90 độ = 180 độ.

Mà 2 góc này ở vị trí đối nhau.

=> Tứ giác AFHE nội tiếp đường tròn (dhnb).