Cho tam giác ABC nhọn. Các đường cao BD, CE cắt nhau tại H.a) Chứng minh 4 điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: B,D,C,E

BD\(\perp\)AC

=>\(\widehat{BDC}=\widehat{ADB}=90^0\)

CE\(\perp\)AB

=>\(\widehat{AEC}=\widehat{BEC}=90^0\)

Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

Do đó: BEDC là tứ giác nội tiếp

=>B,E,D,C cùng thuộc một đường tròn

a: Xét tứ giác AEHD có 

\(\widehat{AEH}+\widehat{ADH}=180^0\)

nên AEHD là tứ giác nội tiếp

hay A,E,H,D cùng thuộc 1 đường tròn

b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}\)

nên BEDC là tứ giác nội tiếp

hay B,E,D,C cùng thuộc 1 đường tròn

Xét tứ giác AEHF có \(\hat{AEH}+\hat{AFH}=90^0+90^0=180^0\)

nên AEHF là tứ giác nội tiếp

=>A,E,H,F cùng thuộc một đường tròn

Xét tứ giác BDHF có \(\hat{BDH}+\hat{BFH}=90^0+90^0=180^0\)

nên BDHF là tứ giác nội tiếp

=>B,D,H,F cùng thuộc một đường tròn

Xét tứ giác HDCE có \(\hat{HDC}+\hat{HEC}=90^0+90^0=180^0\)

nên HDCE là tứ giác nội tiếp

=>H,D,C,E cùng thuộc một đường tròn

Xét tứ giác BFEC có \(\hat{BFC}=\hat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>B,F,E,C cùng thuộc một đường tròn

Xét tứ giác AFDC có \(\hat{AFC}=\hat{ADC}=90^0\)

nên AFDC là tứ giác nội tiếp

=>A,F,D,C cùng thuộc một đường tròn

Xét tứ giác BDEA có \(\hat{BDA}=\hat{BEA}=90^0\)

nên BDEA là tứ giác nội tiếp

=>B,D,E,A cùng thuộc một đường tròn

30 tháng 6 2021

Gọi I là trung điểm của BC => BI=IC=1/2 BC (1)

Vì tam giác FBC vuông tại F; FI là đường trung trực của BC =>FI = 1/2 BC (2)

Tương tự => EI = 1/2 BC (3)

Từ (1), (2) và (3) =>EI = BI = IC = FI = 1/2 BC

=>E, B, C, F thuộc một đường tròn

15 tháng 12 2020

11 tháng 12 2017

A B C D E K M I H F

a) Ta thấy ngay do BD, CE là đường cao nên \(\widehat{BEC}=\widehat{BDC}=90^o\) 

Xét tứ giác AEDC có \(\widehat{BEC}=\widehat{BDC}=90^o\) nên AEDC là tứ giác nội tiếp hay A, E, D, C cùng thuộc một đường tròn.

Đường tròn cần tìm là đường tròn đường kính BC, tức là tâm đường tròn là trung điểm J của BC, bán kính là JB.

b) Xét tam giác BEC và tam giác BHM có : 

\(\widehat{BEC}=\widehat{BHM}=90^o\)

Góc B chung

\(\Rightarrow\Delta BEC\sim\Delta BHM\left(g-g\right)\)

\(\Rightarrow\frac{BE}{BH}=\frac{BC}{BM}\Rightarrow BC.BH=BE.BM\)

Ta có \(BK^2=BD^2=BH.BC=BE.EM\)   mà \(KE\perp BM\Rightarrow\widehat{BKM}=90^o\)

Vậy MK là tiếp tuyến của đường tròn tâm B.

c) 

Gọi F là giao điểm của CE với đường tròn tâm B.

Do \(BE\perp KF\)nên MB là trung trực của FK.

\(\Rightarrow\widehat{MFB}=\widehat{MKB}=90^o\Rightarrow\)tứ giác MFBH nội tiếp.

\(\Rightarrow\widehat{MHF}=\widehat{MBF}\) (Hai góc nội tiếp cùng chắn cung MF)

Ta cũng có MKHB nội tiếp nên \(\widehat{MHK}=\widehat{MBK}\)

Mà \(\widehat{MBF}=\widehat{MBK}\) nên HI là phân giác góc KHF.

Áp dụng tính chất tia phân giác ta có : \(\frac{IK}{IF}=\frac{HK}{HF}\)

Ta có \(HC\perp HI\) nên HC là tia phân giác ngoài của góc KHF.

\(\Rightarrow\frac{CK}{CF}=\frac{HK}{HF}\)

Vậy nên \(\frac{CK}{CF}=\frac{IK}{IF}\)

\(\Rightarrow\frac{CK}{CF+KF}=\frac{IK}{IF+IK}\Rightarrow\frac{CK}{\left(CE+EF\right)+\left(CE-KE\right)}=\frac{IK}{FK}\)

\(\Rightarrow\frac{CK}{2CE}=\frac{IK}{2EK}\Rightarrow CK.EK=CE.IK\)

10 tháng 12 2017

giúp mình với!!!! ai đúng mình k cho

S
22 tháng 8

a. ta có tứ giác BEHM nội tiếp đường tròn đường kính BH

⇒ góc EBH = góc HME (cùng chắn cung EH) (1)

tứ giác BEDC nội tiếp đường tròn đường kính BC

⇒ góc EBD = góc DCE (cùng chắn cung ED) (2)

tứ giác HMCD nội tiếp đường tròn đường kính HC

⇒ góc HMA = góc DCE (cùng chắn HD) (3)

từ (1) (2) (3) ⇒ HM là đường phân giác của △ EMD (*)

Ta có tứ giác ADMB nội tiếp đường tròn đường kính AB

⇒ góc BAM = góc BDM (cùng chắn cung BM) (4)

tứ giác ADHE nội tiếp đường tròn đường kính AH

⇒ góc EAH = góc EDH (cùng chắn cung EH) (5)

từ (4) (5) ⇒ EDH = HDM

⇒ DH là đường phân giác của △ EDM(**)

từ (*) và (**) ⇒ H là tâm đường tròn nội tiếp △ EDM

b. bạn xem thử đề câu b đúng chưa

a: góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

O là trung điểm của AH

b:

XetΔACB có

BD,CE là đường cao

BD căt CE tại H

=>H là trực tâm

=>AH vuông góc BC

=>K là trung điểm của CB

góc ODK=góc ODH+góc KDH

=góc BHK+góc KBH=90 độ

=>KD là tiếp tuyến của (O)