Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì FI vuông góc với AC, BE vuông góc với AC nên FI song song với EQ
suy ra\(\frac{AI}{IE}=\frac{AF}{FB}\)(1)
Vì FJ vuông góc với AD, BC vuông góc với AD nên JI song song với BC
suy ra \(\frac{AF}{FB}=\frac{AJ}{JD}\)(2)
Từ (1) và (2) suy ra \(\frac{AI}{IE}=\frac{AJ}{JD}\)suy ra IJ song song với ED (a)
VÌ IF vuông góc với AC, FQ vuông góc với AC nên IF song song với FQ
suy ra\(\frac{IE}{EC}=\frac{FH}{HC}\) (3)
VÌ FK vuông góc với BC,AD vuông góc với BC nên FK song song với AD
suy ra \(\frac{KD}{KC}=\frac{KH}{HC}\)(4)
Từ (3) và (4) suy ra \(\frac{IE}{EC}=\frac{KD}{KC}\)suy ra IK song song với ED (b)
Vì FK song song với AD(cmt) nên\(\frac{AF}{FB}=\frac{KD}{BK}\)(5)
Vì FQ vuông góc với EB,AC vuông góc với EB nên FQ song song với EI
suy ra \(\frac{AF}{FB}=\frac{QE}{BQ}\)(6)
Từ (5) và (6) suy ra \(\frac{BQ}{QE}=\frac{BK}{KD}\) suy ra QK song song với ED (c)
Từ (a), (b) và (c) suy ra I,J,Q,K thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình bạn tự vẽ nhé. EF cắt AH tại L.
Xét tam giác AIM vuông tại I(MI vuông góc AB) có HF//IM ( H là trực tâm nên HF vuông góc AB, từ vuông góc đến song song >> HF//IM) >> \(\frac{AF}{AI}=\frac{AH}{AM}\left(Talet\right)\)
CMTT >> \(\frac{AE}{AK}=\frac{AH}{AM}\left(Talet\right)\)>> \(\frac{AF}{AI}=\frac{AE}{AK}\). Theo Talet đảo có EF // IK.
Xét tam giác AIK có EF // IK >> AEF đồng dạng AIK ( bạn tự cm, quá dễ) >> góc AFE = góc AIK và góc AEF = góc AKI
Xét tam giác AFL và tam giác AID : chung góc A và AFL = AID (cmt) >> AFL đồng dạng AID >> ALF = ADI đồng vị >> ID // EL
CMTT thì LE // DK. Có E,L,F thẳng hàng nên theo tiên đề Euclid suy ra I,D,K thẳng hàng.
bạn ơi, AFL=AID đang cần chứng minh mà, AFL=AIK mới đúng. nếu AFL=AID=AIK thì I,D,K thẳng hàng rồi.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Xét tam giác BDH và tam giác BEC có: góc B chung ; góc BDH = góc BEC = 90
=> tam giác BDH đồng dạng với tam giác BEC (g-g)
=> BD/BE = BH/BC => BD/BH = BE/BC
Xét tam giác BED và tam giác BCH có: góc B chung; BD/BH = BE/BC (cmt)
=> tam giác BED đồng dạng với tam giác BCH (c-g-c)
b)Xét tam giác BFH và tam giác CEH có: BFH = CEH = 90; BHF = CHE (đối đỉnh)
=> tam giác BFH đồng dạng với tam giác CEH (g-g)
=> FH/EH = BH/CH => FH/BH = EH/CH
Xét tam giác FEH và tam giác BCH có: FHE = BHC (đối đỉnh); FH/BH = EH/CH (cmt)
=> tam giác FEH đồng dạng với tam giác BCH (c-g-c)
=> FEH = BCH hay MEH = BCH(1)
VÌ tam giác BED đồng dạng với tam giác BCH (cmt) => BED = BCH hay HEN = BCH(2)
Từ (1),(2)=> MEH = HEN
Xét tam giác MHE và tam giác NHE có: HME = HNE =90; HE chung ; MEH = NEH(cmt)
=> tam giác MHE bằng tam giác NHE (ch-gn)
=> HM = HN(2 cạnh tương ứng)
còn câu c) mình chưa làm được, bạn làm được chưa ? làm giùm mình với