Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc A chung
=>ΔABE đồng dạng với ΔACF
b: ΔABE đồng dạng với ΔACF
=>AE/AF=AB/AC
=>AE/AB=AF/AC và AE*AC=AB*AF
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC

Hình (tự vẽ)
a) Xét \(\Delta ABDva\Delta ACE\):
\(\widehat{A}\left(chung\right)\)
\(\widehat{E}=\widehat{D}\left(=90'\right)\)
\(=>\Delta ABD\)đồng dạng \(\Delta ACE\left(g-g\right)\)
\(=>\frac{AB}{AC}=\frac{AD}{AE}< =>AB.AE=AC.AD\)
b)xét \(\Delta ADEva\Delta ABC\)
\(\widehat{A}\left(chung\right)\)
\(\frac{AB}{AC}=\frac{AD}{AE}\)
\(=>\Delta ADE\)đồng dạng \(\Delta ABC\left(c-g-c\right)\)
c)Lưu Ý! Đề phải là DE cắt CB tại I
CM:
\(\widehat{IEB}=\widehat{AED}\)(đối đỉnh)
\(\widehat{AED}=\widehat{ACB}\)(tam giác ADE đồng dạng với tam giác ABC)
\(=>\widehat{IEB}=\widehat{ACB}\)
Lại có góc I chung
\(=>\Delta IBE\) đồng dạng với \(\Delta IDC\left(g-g\right)\)
d) từ c)=>\(\frac{IB}{ID}=\frac{IE}{IC}< =>ID.IE=IB.IC=\left(OI-OB\right)\left(OI+OC\right)\)
Mà OC=OB(gt)
\(=>ID.IE=\left(OI+OC\right)\left(OI-OC\right)=OI^2-OC^2\)

a, Xét tgABE và tgACF có:
góc AEB = góc CFA = 90o
góc BAC chung
Từ 2 điều trên => tgABE đồng dạng tgACF (g.g)
=> AB/AC = AE/AF (các cặp cạnh tương ứng)
=> AB.AF = AC.AE
a: Xét ΔADB vuông tại D và ΔAFC vuông tại F có
\(\widehat{DAB}\) chung
Do đó: ΔADB~ΔAFC
b: ΔADB~ΔAFC
=>\(\dfrac{AD}{AF}=\dfrac{AB}{AC}\)
=>\(\dfrac{AD}{AB}=\dfrac{AF}{AC}\)
Xét ΔADF và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AF}{AC}\)
\(\widehat{DAF}\) chung
Do đó: ΔADF~ΔABC
c: Xét ΔBEH vuông tại E và ΔBDC vuông tại D có
\(\widehat{EBH}\) chung
Do đó: ΔBEH~ΔBDC
=>\(\dfrac{BE}{BD}=\dfrac{BH}{BC}\)
=>\(BH\cdot BD=BE\cdot BC\)
Xét ΔCEH vuông tại E và ΔCFB vuông tại F có
\(\widehat{ECH}\) chung
Do đó: ΔCEH~ΔCFB
=>\(\dfrac{CE}{CF}=\dfrac{CH}{CB}\)
=>\(CH\cdot CF=CE\cdot CB\)
\(BH\cdot BD+CF\cdot CH=BE\cdot BC+CE\cdot BC\)
=BC(BE+CE)
\(=BC\cdot BC=BC^2\)