Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:
- Vì \(E F \parallel A M\), theo định lý Ta-lét ta có:
\(\frac{D E}{A M} = \frac{D F}{A M} = 1\)
nên \(D E = A M\) và \(D F = A M\)
suy ra: \(D E + D F = A M + A M = 2 A M .\)
b:Vì \(E F \parallel A M\) và \(A M\) là trung tuyến, ta suy ra \(N\) là trung điểm của \(E F\) theo tính chất đường trung bình.
c: Ta có:
\(S_{F D C}^{2} = k^{4} S_{A M C}^{2}\) \(S_{A M C} \cdot S_{F N A} = S_{A M C} \cdot k S_{F D C}\)
Vậy ta cần chứng minh:
\(k^{4} S_{A M C}^{2} \geq k S_{A M C} \cdot S_{F D C}\)
Chia cả hai vế cho \(S_{A M C}\) (với \(S_{A M C} \neq 0\)):
\(k^{4} S_{A M C} \geq k S_{F D C}\)
Thế \(S_{F D C} = k^{2} S_{A M C}\) vào:
\(k^{4} S_{A M C} \geq k \cdot k^{2} S_{A M C}\) \(k^{4} S_{A M C} \geq k^{3} S_{A M C}\)
Chia cả hai vế cho \(S_{A M C}\) (giả sử \(S_{A M C} > 0\)):
\(k^{4} \geq k^{3}\)
Điều này đúng vì \(k \geq 1\) theo tỉ số đồng dạng.
4o
trình bày hơi dài nên m viết cách cm thôi nhé
a) áp dụng tính chất phân giác của 1 tam giác có AD/DC = AB/BC= 6/4 = 3/2
=> AD/AC = 3/5 => AC= 18/5 (cm)
tương tự thì AD= 18/5 (cm)
b) 2 tam giác ADB và AEC đồng dạng vì chung góc BAC, ^ABC= ^ECA( vì ^ABC =^ACB)
c) cm 2 tam giác BEI và CDI đồng dạng (c.g.c) => IE.CD=ID.BE
d)có thể cm SAED = 9/25. SABC = 9/25. 60 = 21,6(cm2)
mình làm k biết đúng k bạn thông cảm nhé :)

a) A B C D O M N
Áp dụng hệ quả Ta-let vào \(\Delta\)OAB và \(\Delta\)OCD(AB//CD)
=>\(\dfrac{AO}{OC}=\dfrac{BO}{DO}\)
=>\(\dfrac{AO}{OC+AO}=\dfrac{BO}{DO+BO}\)
=>\(\dfrac{AO}{AC}=\dfrac{BO}{BD}\)(1)
Áp dụng hệ quả Ta lét vào \(\Delta\)ADC và \(\Delta\)AMO(MN//CD)
=>\(\dfrac{MO}{DC}=\dfrac{AO}{AC}\)(2)
Áp dụng hệ quả Ta lét vào \(\Delta\)BCD và \(\Delta\)BNO(MN//CD)
=>\(\dfrac{NO}{DC}=\dfrac{BO}{BD}\)(3)
Từ (1), (2),(3):
=>\(\dfrac{MO}{DC}=\dfrac{NO}{DC}\)
=> MO=NO(dpcm)
CHÚC BẠN HỌC TỐT!