Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

hì bn vẽ hình ra được hông mk vẽ ko ra hihi!!!!!!!!!!!!65
568547
a) Ta co: goc FAB + goc BAC = 90 do
goc EAC + goc BAC = 90 do
=> Goc FAB = goc EAC
AF=AC; AB=AE
=> Tam giac AFB = tam giac ACE
=> FB=EC

Lấy K sao cho M là trung điểm của AK thì ta có ACKB là hình bình hành nên góc ACB =180* - góc BAC. Ta cũng tính dc góc FAE= 180* - góc BAC ( tổng của BAC với 2 lần góc CAE, mà góc CAE=90* -góc BAC). Thêm với AC=AF , CK=AE (=AB) nên tam giác ACK = tam giác FAE nên AK=EF mà AK=2AM nên EF=2AM

Hình tự kẻ nhé
a) Ta có: góc FAB + góc BAC = 90 độ
góc EAC + góc BAC = 90 độ
=> Góc FAB = góc EAC
AF=AC; AB=AE
=> Tam giác AFB = tam giác ACE
=> FB=EC
b) Lấy K sao cho M là trung điểm của AK thì ta có ACKB là hình bình hành nên góc ACB =180* - góc BAC. Ta cũng tính dc góc FAE= 180* - góc BAC ( tổng của BAC với 2 lần góc CAE, mà góc CAE=90* -góc BAC). Thêm với AC=AF , CK=AE (=AB) nên tam giác ACK = tam giác FAE nên AK=EF mà AK=2AM nên EF=2AM
c) Gọi H là giao của AM và EF. Tam giác ACK = tam giác FAE nên góc CAK = góc AFE, mà góc CAK phụ với góc MAF nên góc AFE cũng phụ góc MAF. Xét trong tam giác AHF có góc F và góc A phụ nhau nên tam giác AHF vuông tại H suy ra AM vuông góc với EF.
a: ta có; \(\hat{EAC}=\hat{EAB}+\hat{BAC}=90^0+\hat{BAC}\)
\(\hat{BAF}=\hat{BAC}+\hat{FAC}=\hat{BAC}+90^0\)
Do đó: \(\hat{EAC}=\hat{BAF}\)
Xét ΔEAC và ΔBAF có
EA=BA
\(\hat{EAC}=\hat{BAF}\)
AC=AF
Do đó: ΔEAC=ΔBAF
=>EC=BF
b: Trên tia đối của tia MA, lấy K sao cho MA=MK
Xét ΔMAB và ΔMKC có
MA=MK
\(\hat{AMB}=\hat{KMC}\) (hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMKC
=>\(\hat{MAB}=\hat{MKC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CK
=>\(\hat{BAC}+\hat{ACK}=180^0\) (hai góc trong cùng phía)(1)
Ta có: \(\hat{BAC}+\hat{BAE}+\hat{CAF}+\hat{EAF}=360^0\)
=>\(\hat{BAC}+\hat{EAF}=360^0-90^0-90^0=180^0\left(2\right)\)
Từ (1),(2) suy ra \(\hat{ACK}=\hat{FAE}\)
Ta có: ΔMAB=ΔMKC
=>AB=KC
mà AB=AE
nên AE=KC
Xét ΔACK và ΔFAE có
AC=FA
\(\hat{ACK}=\hat{FAE}\)
CK=AE
Do đó: ΔACK=ΔFAE
=>AK=FE
mà AK=2AM
nên EF=2AM
c: ΔACK=ΔFAE
=>\(\hat{CAK}=\hat{AFE}\)
Gọi H là giao điểm của AK và FE
Ta có: \(\hat{HAF}+\hat{FAC}+\hat{CAK}=180^0\)
=>\(\hat{HAF}+\hat{CAK}=180^0-90^0=90^0\)
=>\(\hat{HAF}+\hat{HFA}=90^0\)
=>AH⊥FE tại H
=>AK⊥FE tại H